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Abstract:

A mathematical model for covid-19 is formulated, it is based on a compartmental system of nonlinear
ordinary differential equations focusing on vaccination and excluding any other interventions and hence
the proposed mode is divided into eight compartmental classes, namely, susceptible (S), first dose (V;),
second dose(V,), booster dose vaccinated Vs, exposed (E), asymptomatic (A), symptomatic (I), and
recovery(R). The basic reproduction number R, is calculated by next generation matrix (NGM) method.
Comparison the resulting value of R, with its corresponding for the general model which including
hospitalized (H) shows the importance of keeping bit of healthcare beside vaccinations to get the beast
results to combat the epidemic.

Keywords: COVID-19, Next Generation Matrix, Basic Reproduction Number, Double Dose
Vaccination, Booster Vaccination Dose, Therapeutic Interventions.
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Introduction

The World Health Organization (WHO) first declared COVID-19 as a threat to the international
community on January 30, 2020, and then as a pandemic on March 11, 2020 [1]. On April 04,
2022, there have been 492,271,251 confirmed cases worldwide with 6,178,291 deaths and
427,442,919 recovered. These numbers are exponentially growing day by day [2]. On March, 07,
2023, there have been 680,817,071 confirmed cases worldwide with 6,806,074 deaths and
653,716,966 recovered [3]. However, after strenuous efforts of precautionary and medical
processes that culminated in discovery of vaccinations, the intensity of the epidemic began to
wane. Today (at the time of writing), May, 1%, 2023, there have been 687,121,872 confirmed
cases worldwide with 6,863,851 deaths and 659,671,069 recovered.
https://www.worldometers.info/coronavirus/.

During the first and second waves of the COVID-19 pandemic, non-pharmaceutical
interventions (NPIs) were the only available measures to reduce the burden on healthcare
systems and save lives. As of December 2020, multiple vaccines against COVID-19 were
approved but travel restrictions and social distancing are still needed, especially because of the
spreading of highly transmissible variants of concern [4]. Prior to December 2020,
implementation of non-pharmaceutical interventions (NPIs), including school/business closures,
physical distancing, and mask-wearing, was the main tool to control the spread of SARS-CoV-2.
However, with the development of effective vaccines against SARS-CoV-2, in December 2020
many countries were able to initiate vaccination campaigns [5-7]. The most recommended
strategy was prioritizing the elderly and high-risk populations, followed by essential workers,
and then the general public [8-10]. At the initial stage of vaccine distribution, strict NPIs were
kept in place to avoid potential virus resurgence. After almost six months of immunization, the
focus shifted in establishing an optimal vaccination strategy in order to safely lift NPIs while
avoiding virus resurgence [11].

Researchers have contributed a lot in forecasting, and understanding the transmission dynamics,
the fatality of SARS-CoV-2, and the evolution of the pandemic, to help in the fight against this
new global problem. Among the researchers, statisticians, epidemiologists, and mathematicians
contributed to formulating models to capture the transmission dynamics of COVID-19 and
forecasting the evolution of the pandemic among different populations amidst government
interventions. These mainly included statistical models [9-18], deep-learning models [19-24] and
mathematical models [1,14,25,26]. Statistical models offer more precise models and deep-
learning techniques are the key to high-quality predictive models [27]. However, both statistical
and deep-learning models require real data to make predictions. But with mathematical models, a
set of mathematical equations that mimic the current situation is written, and solving them for
certain parameters provide information about the disease characteristics [28]. Some of their
advantages include mathematical models representing the real situation of the problem being
solved and they do not require all data to be available for it to be fitted as deductions from

known information about the situation can be used. Also, they can handle sudden changes and
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complexity with ease. Since the start of the COVID-19 pandemic, mathematical models have
been at the forefront of determining and forecasting the spread of COVID-19 and shaping
government policies around the world [28]. A seminal paper in 1927 introduced the Susceptible,
Infectious, and Recovered (SIR), a mathematical model for infectious diseases [29]. Since then,
with advances in information technology and fast computing methods, many variations of the
SIR model have been developed. Because mathematical models can easily be understood and
definite conclusions about the COVID-19 outbreak can be made from them, Susceptible,
Exposed, Infectious and Recovered (SEIR), a modification of SIR and a cascade of other
modifications have been constructed and developed for predicting COVID-19 since its
declaration as a global pandemic [30-42]. However, statistical and deep-learning models would
require real data in substantial amounts to perform any forecasting or prediction. On the other
hand, these new developments can easily be modelled with little or no data with mathematical
models [43].

Main Text

To investigate the importance of keeping a bit of healthcare beside vaccinations to get the beast
results to combat the epidemic, the extended SEIR model [3] is modified by eliminating the
compartment H(t) which was represented medical treatments, Table 1. represents all the
parameters used in COVID-19 transmission model, and hence the new proposed model is as shown

in the Flow chart 1.

Table 1
Detailed description of state variables and relevant parameters of the model
Variable Description
S() Susceptible
Vi(t) First dose vaccinated
V, (1) Second dose vaccinated
V5(t) Booster dose
E(t) Exposed
A(t) Asymptomatic
1(t) Symptomatic
H(t) Hospitalized
R(t) Recovered
A Recruitment rate into susceptible population
a Rate of loss of immunity
Ba Rate of transmission from S to E due to contact with A
Bi Rate of transmission from S to E due to contact with [
Bs = BaA + Bil
A Rate of vaccinated with first dose
u Natural human death rate
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Efficacy of the first dose

Efficacy of the second dose

Rate of transmission from V; to 1,

Rate of transmission from V,to V5

Rate of transmission from V5 to S

Progression rate from E' to either A or [
Proportion of asymptomatic infectious people
Rate of transmission from A to [

Rate of recovery of the asymptomatic human population
Rate of recovery of the symptomatic population
Rate of transmission from I to treatment

Rate of death due to the COVID-19 disease
Rate of recovery due to treatment
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Figure 1. Flow chart of the proposed model

The constructed mathematical model is given by:

S=A+0R—[Bs+A+pulS+mV,
_V1 =AS —[(1 —&)Bs +n + ulVy
Vo =nV; — [(1 — &)Bs + w + ulV;

Vs = wV, — [+ u]Vs
E=psS+ (1 —e)BsVi + (1= &)BsV, — (a + WE
A=kaE —[p+y+ulA
[=0—-K)aE +@A—[p+u+68]I
R=yA+yI— (o + uwR
The infected subsystem:
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=BsS+ (1 —e)BsVi + (1 — &)BsV, — (@ + WE
A=kaE —[p+y+ulA
[=0—-k)aE +@A— [ +u+8]1

Decomposition the infected subsystem:
ﬁsS + (1 - Sl)ﬁsvl + (1 - 52).85‘/2

F= 0
0
—(a+wE
M = kaE —[p +y +ulA

(1—-k)aE+pA—[Y +u+96ll

The decease free equilibrium:
DFE(Sq Vip Voo Vi 0 0 0 0);
_ A+ mlV3
7 u+2

Cu+n?

V1o DD

V20=LV10= n IA(A+1TV30)
pto @+my+a

—LV . w nA(A + mV3g)

Tutn P ptn o)+ + )

V30

then
(u+mu+ 0)u+n)+ D)V = wnd(A + mVs)

[((u+m)(u+ o)+ )+ 1) — wnin]Vz = wndA
and hence,
_ wnid
A m @+ )@ +me+ ) - onin
The Jacobian of this decease free equilibrium for F and M are (respectively)

0 BaSo+ (1 —&)BaVio+ (X —&)BaVoo BrSo+ (1— &) BiVip+ (1 —&)BVa0

V3 0

F=10 0 0
0 0 0
—(a+w 0 0
M = Ka —lp+y+ul 0
1-ka @ —[Y+h+u+8]
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Since the matrix has two zero rows, the next generation matrix of the system is taken by the
spectral radius of NGM = —ETFM~1E where ET =(1 0 0)and

-1
0 0
a+u
1 —ka -1
M~ = pa— 0
(a+w)(@p+y+w p+y+u
-1 1-Ka kap '/ -1
Y+pu+6l atpy  (@+we+y+wl (@+y+w@+u+6) @+u+d)l

and hence,
(—=ETF)(M~'E) =
-(0 BaSo+ (1 —&)BaVio+ (1 —&)BaVag BiSo+ (1 — & )BiVio + (1 —€)B1V20)

-1
a+u \
I

—

—ka
(a+wp+y+w
-1 (1—k)a+ kag ]
Y+u+d| atu  (a+wle+ty+wp

which reduces to single element. Therefore, the basic reproduction number of the system is

—ka
Ry = —[BaSo + (1 — &1)BaVio + (1 — ) BaV20] [(a’ T 0@ Fr ) = [B1 So
+ (1 — & )BiVio

+ (1 —&)BiV2ol{

-1 (1—k)a+ kag l
Y+u+d| atup (a+u)(<p+)/+u)}
ka
][(a+u)(<p+y+u)]+ﬁI[SO+(1_gl)V10
1-kKa N kag
W+p+da+p) W+up+da+wlo+y+p

= PalSo + (1 —g)Vip+ (1 — )V

+ (1 — &3 )Vy] l

) ka (1 - k)a
= [So + (1 — e)Vig + (1 — £3)Vy] {,BA ((a Tty + H)) th <(l/J +u+8)(a+p

N kagp )}
W+u+d)a+p)lo+y+w

k
Ro = 5o+ (1= Vo + (L~ Vool (B4 (o5 1555

alp+ (1 -k +w )}
W+u+da+wlp+y+w

+ﬂ1<
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This result consists of its analogy when health care provides, except for the absence of h, which expresses
rate of transmission from [ to treatment H. [3]

k
Roz = [So + (1 — &)V1o + (1 — &2)V30] {ﬂA ((0{ T 'u)((pa_i_ Y+ .U)>

+p ale + (1 -k + W]
"\@W+h+u+8@+wlp+y+u

Conclusion

- Although F and M are 4 x 4 matrices when medical care was available and 3 x 3 if not;
However, the statements of R,3 and R, were compatible, this confirms the validity and stability
of next generation matrix (NGM) method in calculating the basic reproduction number.

- Appearance of h in the statements of R,z without R, specifically in the denominator indicates its
contribution to make Ry3 < Ry, Which means that the addition of extra care to vaccinations
contributes to the reduction of the basic reproduction number, and hence to combat the epidemic.
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