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Ehrhardt, 2008; Bohner & Zheng, 2009;
INTRODUCTION Cen & Le, 2011; Company et al., 2008;

. . ) ) Giilkag, 2010).
In recent years fractional partial differential

equations have received considerable inter- The homotopy perturbation method was
est and have been applied to many problems first introduced and applied by He (He,
which are modeled in various arecas for in- 1999, 2000, 2006). This method has been
stance: several physical phenomena and coupled with integral transforms and ap-
economies are represented by such equa- plied by many authors, for example, ho-
tions (Oldham & Spanier, 1974; Zhu et al., motopy perturbation is combined with La-
2014) On the other hand, many authors place transform, Sumudu transform, and
studied the existence of the solution of the Mohand transform to solve many problems
Black-Scholes equation (Ankudinova & such as one-dimensional non-homogenous
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partial differential equations with a variable
coefficient (Madani et al., 2011), Black-
Scholes of fractional order (Elbeleze et al.,
2013; Kumar et al.,, 2012), Klein-Gordn
(Dubey et al., 2022).

The Mohand transform was first proposed
and introduced by (Mohand & Mahgoub) in
2017 and applied by many authors,
(Aggarwal et al.,, 2020; Attaweel &
Almassry, 2020; Qureshi et al., 2020).

(Khan & Ansari, 2016) presented an analyti-
cal solution of the Fractional Black-Scholes
European option pricing equation in the form
of the Fractional Taylor series with easily
computable components. On the same side
(Ravi Kanth & Aruna, 2016) suggested two
methods for the solution of the time fractional
Black-Scholes European option pricing equa-
tion. These methods are the fractional differ-
ential transform method (FDTM) and the
modified fractional differential transform
method (MFDTM).

In the present paper, fractional Black-
Scholes European pricing equations are ob-
tained from the corresponding integer order
equation by replacing the first-order time
derivatives with a fractional derivative in
the Caputo sense of order a with 0 < a < 1.
This equation is described by the following
equation

0%u N ox?0%*u O ou ©

gt T3 gz T TWOx 5~ (00Ul
=0,(x,t) e R* x (0,T),0
<a<l (D

Where u(x,t) is the European call option,
price at asset price x and at time t,T is the
maturity, r(t) the risk-free interest rate, and
o(x) represents the volatility function of the
underlying asset. The payoff functions are

u.(x,t) = max(x — E,0);

(2)

up,(x,t) = max(E — x,0)

Where u.(x,t) and u,(x,t) are the values of
the European call and put options respective-
ly, E denotes the expirations price for the op-
tion, and function max(x, 0) gives the large
value between x and 0.

The structure of this paper is organized as fol-
lows: In section 2 some basic definitions of
fractional calculus and Mohand transform are
given. The basic idea of the homotopy pertur-
bation method is presented in section 3. In
section 4 the problem with the solution algo-
rithm is given. In section 5 two examples
from literature are presented. A discussion of
the results is given in section 6. Finally, the
conclusion is drowning in section 7.

BASIC DEFINITIONS

Definition 2.1: A real function f(x),x > Ois
said to be in space C,, u € R if there exists a
real number p = u, such that f(x) = xPf;(x)
where f;(x) € C(0,) and it is said to be in
the space C ifand only if f" € C,,n €N

Definition 2.2 The Riemann-Liouville frac-
tional integral operator of order @ > 0 is de-
fined as:

R T ft)dt
0N =t Gopre E>ac
> 0)

For Riemann-Liouville fractional integral, one
has

ey = Fy+1)
T T(a+y+1)

Definition 2.3: the Caputo fractional deriva-
tive of a function f(t) of order @ is defined

as:
e B o fM(t)dt
£ f() = T@ ). &—pein’
n—1<as<sn 3)
Lemma

If m—1<a<m, meN,felm u>
—1, then the following two properties hold

L DJf(0)] = f(x). )
2. JUDFCO] = F(0) - S FHO S
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Definition 2.4: The Mittag-Laffler function
E,(z) with @ > 0 is defined by the following
series representation, valid in the whole com-
plex plane

ZTL

Ea(2) = Xnzotniy (4)

Definition 2.5: (Mohand & Mahgoub, 2017)
Consider a set A defined as

1t
A= {f(t):El M,t,,7, > 0,|f(t)| < MeY,

if te (=1)) x[o, oo)} (5)

The Mohand transform denoted by operator
M (+) defined by integral

MIf(O)] = Ru) = u? [ f(De ¥ dt,

t>0, ue€lry,1;y] (6)

The variable u in this transform is used to fac-
tor the variable t in argument of the function

f.

The function f(t) in equation (6) is called the
inverse Mohand transform of F(u) and is de-
noted by f(t) = M~[R(u)].

Some Properties of Mohand Transform

a. Linearity property of Mohand transforms:
If Mohand transform of functions
F,(t) and F,(t) are R;(u) and R,(u) re-
spectively, then Mohand transform of
[aF;(t) + bF,(t)]- is given by
[aR;(u) + bR, (u)], where a, b are arbi-
trary constants.

b. Change of scale property: If Mohand
transform of function F(t) is R(u) then
Mohand transform of function F(at) is

given by a R (2)

c. Convolution theorem for Mohand trans-
forms: If Mohand transform of functions
F,(t) and F,(t) are R;(u) and R,(u) re-
spectively, then Mohand transform of
their convolution F, (t) * F,(t) is given

{Fl(tl) * Fy(t) }
_ ( )M{Fl(t)}M{F1 )}

u?
1
= (=) R Ry
Where F; (t) * F,(t) is defined by
t

Fy() * Fy() = f Fi(t —x) Fo(x) dx
0 t

= fFl(x) Fy(t —x)dx
0

d. Derivative theorem: Let R(u) be the Mo-
hand transform of M[f(t)] = R(u) then

MIf™()] = u™R(w)
n-1

_ z un—k+1f(k) (0)

k=0

e. Fractional derivative theorem: Let
M[f(t)] = R(u) be the Mohand transform of
a piece-wise continuous and exponential order
function f(t). The Mohand transform for the
fractional order derivative of the function
f(t) under the classical Caputo fractional or-
der derivative operator of order ¢ > 0 is de-

vised as
n-—1 k)
MIDEF(O)] = u@RG) - Y LD (7)
k=0

For further details and properties of Mohand
transform see (Aggarwal & Chauhan, 2019;
Aggarwal et al., 2018).

The Homotopy Perturbation Method

o illustrate the basic idea of this method, we
consider the following nonlinear differential
equation

Au)—f(r)y=0re Q (8)
with boundary conditions
ou
B(u,—)=0, rerl 9
on

Subject to the initial condition:

u®(0) = ¢ (10)

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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where A is a general differential operator, B is
a boundary operator, f(r) is a known analytic
function, and I' is the boundary of domain Q.
In general, the operator A can be divided into
two parts L and N where L is a linear opera-
tor while N is the nonlinear operator. Eq. (8)
therefore can be written as follows:
Lw)+Nw)—f(r)=0 (11)

By the homotopy technique [24, 25] we con-
struct a homotopy v(r,p):Q x[0,1] > R
which satisfies

H(v,p) = (1 —p)[L(v) — L(uo)]
+p[A(v) — f(r)] =0 p€[0,1],r € Q (12)

Or

H(v,p) = L(v) — L(uop) + pL(uo)
+p[N@w)—-f(M]=0 (13)

where p € [0,1] is an embedding parameter,
Uy 1s an initial approximation of Eq. (8)
which satisfies the boundary conditions.

From (12) and (13) we have

H(v,0) =L(v) — L(uy) =0
(14)
Hw,1) = AWw)—f(@r) =0

The changing in the process of p from zero to
unity is just that of H(r,p) from wuy(r) to
u(r). In topology, this is called deformation
and L(v) —L(upy), and A(w)— f(r) are
called homotopic.

Now, assume that the solution of equation
(12) and (13) can be expressed as

vV =vy +pv + P2, e (15)

The approximate solution of Eq. (3.1) can be
obtained by setting p =1

u(x,t) = lin}v = Vo4V Uy (16)
p—)

The Problem with the Solution
Algorithm

We consider the following fractional Black-

Scholes (1) of the form

0%u N ox?0%*u
at« 2 0x2

+ r(t)xg—z —r(t)u] =0,

(x,t) € R x (0,7), 0<ac<l1

Firstly, applying the Mohand transform on
both sides of (1) subject to initial condition
(2), we have

Mu(x,t)] = uu(x,0)

ox?
+u*M Tuxx + r(t)xu, —r®)u| (17)

By operating the inverse Mohand transform
on both sides in (17), we have

2
o
u(x,t) = u(x,0) — M‘l[u‘“M[Tuxx

+ r(t)xu, — r(t)u]] (18)

Now, applying the (HPM) we get

> v (6 = u(x, 0)
n=0

—p| Mt |u*Mm [z p"H, (u) (19)
n=0
where
2
Hy = —Upyy + r(t)xunx - r(t)un]

2

Equating the corresponding power of p on
both sides in equation (19), we have

p%:uy(x, t) = u(x,0),
priug(x, t) = M~ (u"*M[Hy(w)])

pZuy(x,t) = M~ (u™*M[Hy(w)]) (20)

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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priun(x,t) = M~( u *M[H,_,(W)])
So, that the solution u(x, t) of the problem is

given by

n
u(x,t) = lim Z u,(x,t)
" n=0

APPLICATIONS
In this section, we discuss the implementation
of the proposed method.

Example 5.1. We consider the following frac-
tional Black-Scholes option pricing equation
as follows:

0°u  ox?0%*u

ou
+ (k — l)a—ku],

at* 2 0x?

0<a<1(21)
subject to initial condition
u(x,0) = max(e* — 1,0) (22)

Applying the Mohand transform on both sides
of (21) subject to initial condition (22), we
have
Mlu(x, t)] = uu(x,0)

+ U *M[uy, + (k — Du, — kul (23)

Operating the inverse Mohand transform on
both sides of (23), we have

u(x,t) = max(e* — 1,0) + M~ u"*M[u,,
+ (k—Du, — ku]]

Now, applying (HPM)

Yn=oP"Up (x,t) = max(e* —1,0)+

(24)

p| M~ |u"*M [Z p"H,(w)
n=0

where
Hy = Upyx + (k — 1)unx - 7"kun]

Equating the corresponding power of p on
both sides in equation (24), we have

p°:uy(x,t) = max(e* — 1,0),
phiug(x,t) = M~ (u*M[Ho(w)])

(=kt%)

= —max(ex, 0) m

(=kt%)

X~ 1,0) ——
+ max(e , )F(oc+1)

p*iup(x,t) = M~ (u™*M[H, W)])

(—kt®)?

= — x, 0 -
max(e®, 0 r2o 7

(—kt*)?
)_

x _
+ max(e 1,0 TZaiD

p™iun(x,t) = M7 (u*M[Hp- (W]

_ . (_kta)n

= —max(e*,0) F'(na+ 1)
v 1,0y k)

+max(e — 1, )m

So that solution u(x, t) of the problem is giv-
en by

n
u(x,t) = lim Z U, (x, t)
" n=0

= max(e* — 1,0)E,(—kt%)
+max(e”, 0)(1 — Ea(kt“))

where E,(—kt®) is a Mittag-Leffler function
in one parameter.

For the special case a = 1, we get

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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u(x,t) = max(e* —1,0)e Kkt 0%u 92 ou

u
0.08(2 i 2x?— +0.06x—
+ max(e*, 0)(1 — e*¢) Fr (2+sinx)"x" o5 +0.06x 2

L , —006u=0 ,0<a<1(25)
Which is an exact solution of Black-Scholes

equation (21) fora =1 Ll —— ey
b — — Approximate solution at +—0.01
and a=1

(a)

o x £— 001}

EEF3IT .
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(x 1) e e 001
forei=05 5 St A
B i o 77 Ly

LRI 0.02 [ [— Exact solution at t—0.02
"’I'_'#b.. 520 &Lt 2 d 4 - Approximate solution at t—0.02
% :

Tl and a=1
A gy o s
R Ay

1L =0.02)

12
_ Exact solution at —0.04
4 - — Approximate solution at =004
and a=1
(1)
foro=1
1. E=0_04)
3
12
_ Exact solution at t—0.05
1 — — Approximate solution at t=0.05
and oa=1
: ‘% LG =005y
Vi A i 0y Ly iy LY
e e
el el e
n(x, 1) £ i i, .,*:"""itg,?
g

Figure (2). Comparison of approximate solution with
Figure (1). (a) approximate solution @ = 0.5 exact solution at different times t = 0.01,0.02,0.04,0.05
(b) approximate solution @ = 1, and (c) exact solution for Eq.(21) with initial condition (22) with a = 1.

for equation (21) subject to the initial condition

Example 5.2. We consider the following frac- u(x, 0) = max(x — 25e7°°¢,0) (26)
tional Black-Scholes option pricing equation

Firstly, applying the Mohand transform on
as follows:

both sides of (25), subject to initial condition
(26), we have

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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n
— _ -«
Mlu(x,t)] = uu(x,0) — u~*M[0.08 u(x,t) = lim Z w, (2, )
n—-oo
. 2.2 _ n=0
(2 + sinx)* x“uy, + 0.06xu, — 0.06u](27) — x(1— E,(~0.06t%)

Operating the inverse Mohand transform on 006 .
both sides of (27), we have +max(x — 25e7"7°,0)E4(—0.06t%)

u(x, t) = max(x — 25e~°9, 0) yvhere E,(—kt%) is a Mittag-Leffler function
in one parameter.

2
- - . 2
—M7 [u™*M[0.08 (2 + sinx) X“Uxx For the special case @ = 1, we get

+0.06xux — 0.06u u(x’ t) = x(]_ — eO'OGt, ())
Now, applying (HPM) + max(x — 25,0)e 906
Z p"u, (x,t) = max(x — 25e7%9€,0) Which is an exact solution of Black-Scholes
n=0 equation (25) fora =1
—p| M~ |{u™*M [Z p"Hy,(u) (28) @
n=0
where
2
Hyp = 0.08 (2 + sinx) %%ty + 0.06xu, aox

— 0.06u

Equating the corresponding power of p on
both sides in equation (28), we have

»)

p%:uy(x, t) = max(x — 25e7296,0),
Pliul(x,(t) = M"al)( u”*M[Hy(w)])
—0.06t
=X - -0.06 e
= —x CE) + max(x — 25e ,0) o %:,-;"f.:‘%:;"- e
(—0.06t%)
Na+1)
pruy (x,t) = M~ (u™*M[H; (W)])
_(=0.06t%)?
- ' TQa+ 1)
(—0.06t%)?
rea+1)

+ max(x — 25e7296,0)
©

s

2752
S AR T T

B e e b

P”!zun(x, t) =M (u*M[Hp-, (WD

:
L(c006e (x — 25¢-096. ) e = A
= - _ 257
- ) N ARSI
F(na +1) 8- A
(—0.06t%)" e :

I'(na + 1)

Figure (3). (a) approximate goiution a = 0.5, (b) ap-
proximate solution @ = 1, and (c) exact solution for
en by equation (25)-(26)

So that solution u(x, t) of the problem is giv-

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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Exact solution at t=0.01

] — - — approximate solution at
t=0.01 and a=1

u(x, =001y

Exact solution at =0.02
1 — - — Approximate solution at +=0.02
] and a=1

ufx, £=0.02

Exact solution at —=0.04
1 — — Approximate solution t=0.04
and a—1

ulx.=0.04)

26.5 Exact solution at t=0.05 /"
Approximate solution at =005
and a=1 P

Figure (4). Comparison of approximate solution with
exact solution at different times t = 0.01,0.02,0.04,0.05
for Eq. (25) with the initial condition (26), with a = 1.

12 A

FBSEs (20-21)
FBSEs (25-26)

10

g -

ulx.f 6+

Figure (5). Comparison of the solution for equation
(21)-(22) and equation (25)-(26) with @ = 0.5 at time
t=0.01

DISCUSSION

Figures (1) (a and b) and (3) (a and b) display
the change in the solution behaviors when
a =1and 0.5 respectively. In both subfigure,
we see that the approximate solution is very
close to the exact solution subfigure (c) of (1)

and (3).

Further, Figures (2) and (4) show the compar-
ison of the exact solution with the (HPMTM)

solution at « =1 and t = 0.01,0.02,0.04 and
0.05 for equations (21)-(22) and (25)-(26) re-
spectively. It is clear that the (HPMTM) solu-
tions seem to coincide with the actual solu-
tion. Finally, Figure (5) provides a compari-
son of (21)-(22) and (25)-(26) with a =0.5
and « = 0.01, where it can be concluded that
the difference between the solution of frac-
tional Black-Scholes (21)-(22) and the solu-
tion of fractional Black-Scholes (25)-(26) is
due to the difference in o in both equations.

CONCLUSION

In this paper, the homotopy perturbation
method was coupled with Mohand transforms
(HPMMT) and successfully applied to get the
approximate analytical solution of the frac-
tional Black-Scholes option pricing equation
in terms of convergent series with easily
computable components. The results show
that this method is a powerful tool for obtain-
ing exact and approximate analytical solutions

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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of fractional Black-Scholes European option
equations.

Table (1). Mohand transform of some basic mathemat-
ical functions

S.N. F(t) M[F(t)] = R(w)
1 1 u
t 1
3 t2 2!
u
4 t"neN !
un—l
5 " n+1)
un—l
6 eat uz
(u—a)
7 sinat au?
(u? + a?)
8 cos at u?
(u? + a?)
9 sinh at au?
(u? —a?)
10 cosh at ud
(u? —a?
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