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Abstract:  The Black-Scholes equation is one of the most significant math-
ematical models for a financial market. In this paper, the homotopy pertur-
bation method is combined with Mohand transform to obtain the approxi-
mate solution of the fractional Black-Scholes European option pricing 
equation. The fractional derivative is considered in the Caputo sense. The 
process of the methods which produce solutions in terms of convergent se-
ries is explained. Some examples are given to show a powerful and effi-
cient method to find approximate analytical solutions for fractional Black-
Scholes European option pricing equation. Further, the same equation is 
solved by the homotopy perturbation Sumudu transform method. The re-
sults obtained by the two methods are in agreement. 
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 تقریبي لمعادلة بلاك شولز من الرتبة الكسریة معادلة تسعیر الخیار الاوروبيالحل ال
 : الكلمات المفتاحیة

 .زشول-معادلة بلاك 
 .بضطر لماالتشویش  طریقة

ـــــــل   التكـــــــاملي.  مهنـــــــد  تحوی
 .تفاضل كابوتو الكسري

 

نسبة للسوق المالي. في هذا واحدة من أكثر النماذج الریاضیة أهمیة بال زشول-تعد معادلة بلاك :المستخلص 
بــلاك  للحصــول علــى الحــل التقریبــي لمعادلــة  مهنــد مــع تحویــل بضــطر لماالتشــویش  طریقــة تــم دمــج، البحــث
سـوف یـتم شـرح  . التفاضـل الكسـري یكـون تحـت تعریـف كـابوتو. للتسـعیر الأوروبـي مـن الرتبـة الكسـریة شـولز

 ةم إعطـاء بعـض الأمثلـة لإظهـار قـو تـالمتقاربـة.  كمتسلسـلة مـن الحـدود الحـل  و كیفیة الحصول علـىالطریقة 
للتســعیر الأوروبــي مــن الرتبــة  شــولز -معادلــة بــلاكل  تقریبیــة تحلیلیــة و لإیجــاد حلــولهــذه الطریقــة ة یــوفعال

اضــطراب هوموتــوبي ســومودو. عــلاوة علــى ذلــك، تــم حــل نفــس المعادلــة مــن خــلال طریقــة تحویــل  .الكســریة
 .متوافقةالنتائج التي تم الحصول علیها من خلال الطریقتین 

INTRODUCTION 

In recent years fractional partial differential 
equations have received considerable inter-
est and have been applied to many problems 
which are modeled in various areas for in-
stance: several physical phenomena and 
economies are represented by such equa-
tions (Oldham & Spanier, 1974; Zhu et al., 
2014) On the other hand, many authors 
studied the existence of the solution of the 
Black-Scholes equation (Ankudinova & 

Ehrhardt, 2008; Bohner & Zheng, 2009; 
Cen & Le, 2011; Company et al., 2008; 
Gülkaç, 2010). 

The homotopy perturbation method was 
first introduced and applied by He (He, 
1999, 2000, 2006). This method has been 
coupled with integral transforms and ap-
plied by many authors, for example, ho-
motopy perturbation is combined with La-
place transform, Sumudu transform, and 
Mohand transform to solve many problems 
such as one-dimensional non-homogenous 
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partial differential equations with a variable 
coefficient (Madani et al., 2011), Black-
Scholes of fractional order (Elbeleze et al., 
2013; Kumar et al., 2012), Klein-Gordn 
(Dubey et al., 2022). 

The Mohand transform was first proposed 
and introduced by (Mohand & Mahgoub) in 
2017 and applied by many authors, 
(Aggarwal et al., 2020; Attaweel & 
Almassry, 2020; Qureshi et al., 2020).  

(Khan & Ansari, 2016) presented an analyti-
cal solution of the Fractional Black-Scholes 
European option pricing equation in the form 
of the Fractional Taylor series with easily 
computable components. On the same side 
(Ravi Kanth & Aruna, 2016) suggested two 
methods for the solution of the time fractional 
Black-Scholes European option pricing equa-
tion. These methods are the fractional differ-
ential transform method (FDTM) and the 
modified fractional differential transform 
method (MFDTM). 

In the present paper, fractional Black-
Scholes European pricing equations are ob-
tained from the corresponding integer order 
equation by replacing the first-order time 
derivatives with a fractional derivative in 
the Caputo sense of order 𝛼 with 0 < 𝛼 ≤ 1. 
This equation is described by the following 
equation   
 
𝜕𝛼𝑢
𝜕𝑡𝛼

+
𝜎𝑥2

2
𝜕2𝑢
𝜕𝑥2

+ 𝑟(𝑡)𝑥
𝜕𝑢
𝜕𝑥

− 𝑟(𝑡)𝑢]
= 0, (𝑥, 𝑡) ∈ ℝ+ × (0,𝑇), 0
< 𝛼 ≤ 1            (1) 

Where 𝑢(𝑥, 𝑡) is the European call option, 
price at asset price 𝑥 and at time 𝑡, 𝑇 is the 
maturity, 𝑟(𝑡) the risk-free interest rate, and 
𝜎(𝑥) represents the volatility function of the 
underlying asset. The payoff functions are  
 

𝑢𝑐(𝑥, 𝑡) = max(𝑥 − 𝐸, 0) ;  
(2) 

𝑢𝑝(𝑥, 𝑡) = max(𝐸 − 𝑥, 0)  

Where 𝑢𝑐(𝑥, 𝑡) and 𝑢𝑝(𝑥, 𝑡) are the values of 
the European call and put options respective-
ly, 𝐸 denotes the expirations price for the op-
tion, and function max(𝑥, 0) gives the large 
value between 𝑥 and 0. 
The structure of this paper is organized as fol-
lows: In section 2 some basic definitions of 
fractional calculus and Mohand transform are 
given. The basic idea of the homotopy pertur-
bation method is presented in section 3. In 
section 4 the problem with the solution algo-
rithm is given. In section 5 two examples 
from literature are presented. A discussion of 
the results is given in section 6. Finally, the 
conclusion is drowning in section 7. 

BASIC DEFINITIONS 

Definition 2.1: A real function  𝑓(𝑥), 𝑥 > 0is 
said to be in space 𝐶𝜇, 𝜇 ∈ 𝑅 if there exists a 
real number 𝑝 ≥ 𝜇, such that 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥) 
where 𝑓1(𝑥) ∈ 𝐶(0,∞) and it is said to be in 
the space 𝐶𝜇𝑛 if and only if  𝑓𝑛 ∈ 𝐶𝜇,𝑛 ∈ 𝑁 

Definition 2.2 The Riemann-Liouville frac-
tional integral operator of order 𝛼 > 0 is de-
fined as: 

(𝐽𝛼𝑓) =
1

Γ(𝛼)
�

𝑓(𝑡)𝑑𝑡
(𝑥 − 𝑡)1−𝛼

𝑥

𝑎
,    (𝑥 > 𝑎,𝛼

> 0) 
For Riemann-Liouville fractional integral, one 
has  

J𝛼𝑥𝛾 =
Γ(𝛾 + 1)

Γ(𝛼 + 𝛾 + 1)
 

Definition 2.3: the Caputo fractional deriva-
tive of a function 𝑓(𝑡) of order 𝛼  is defined 
as: 

𝐷𝑡𝛼𝑓(𝑡) =
1

Γ(𝛼)
�

𝑓𝑛(𝑡)𝑑𝑡
(𝑥 − 𝑡)𝛼+1−𝑛

𝑥

𝑎
,

𝑛 − 1 < 𝛼 ≤ 𝑛                (3) 
Lemma  
If 𝑚− 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁,𝑓 ∈ 𝐶𝜇𝑚,   𝜇 >
−1, then the following two properties hold 

1. 𝐷𝛼[𝐽𝛼𝑓(𝑥)] = 𝑓(𝑥). 
2. 𝐽𝛼[𝐷𝛼𝑓(𝑥)] = 𝑓(𝑥) − ∑ 𝑓𝑘(0)𝑚−1

𝑘=1
𝑥𝑘

𝑘!
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Definition 2.4: The Mittag-Laffler function 
𝐸𝛼(𝑧) with 𝛼 > 0 is defined by the following 
series representation, valid in the whole com-
plex plane  

 𝐸𝛼(𝑧) = ∑ 𝑧𝑛

Γ(𝛼𝑛+1)
∞
𝑛=0                         (4)  

 
Definition 2.5: (Mohand & Mahgoub, 2017) 
     Consider a set  𝐴 defined as  

𝐴 = �𝑓(𝑡):∃ 𝑀, 𝜏1, 𝜏2 > 0, |𝑓(𝑡)| ≤ 𝑀𝑒
|𝑡|
𝜏𝑗 ,

𝑖𝑓 𝑡 ∈ (−1)𝑗 × [0,∞)�  (5) 

The Mohand transform denoted by operator 
𝑀(∙) defined by integral  
     𝑀[𝑓(𝑡)] = 𝑅(𝑢) =  𝑢2 ∫ 𝑓(𝑡)𝑒−𝑢𝑡𝑑𝑡,∞

0
𝑡 ≥ 0,   𝑢 ∈ [𝜏1, 𝜏2]                       (6)             

The variable 𝑢 in this transform is used to fac-
tor the variable 𝑡 in argument of the function 
 𝑓. 

The function 𝑓(𝑡) in equation (6) is called the 
inverse Mohand transform of  𝐹(𝑢) and is de-
noted by 𝑓(𝑡) = 𝑀−1[𝑅(𝑢)]. 

Some Properties of Mohand Transform 

a. Linearity property of Mohand transforms: 
If Mohand transform of functions 
F1(t) and F2(t) are R1(u) and  R2(u) re-
spectively, then Mohand transform of 
 [aF1(t) +   bF2(t)]- is given by  
[aR1(u) + bR2(u)],  where a, b are arbi-
trary constants. 

b. Change of scale property: If Mohand 
transform of function F(t)  is R(u) then 
Mohand transform of function F(at) is 
given by a R �u

a
�. 

c. Convolution theorem for Mohand trans-
forms: If Mohand transform of functions 
F1(t)  and F2(t) are R1(u) and  R2(u)  re-
spectively, then Mohand transform of 
their convolution F1(t) ∗ F2(t)   is given 

{𝐹1(𝑡) ∗ 𝐹2(𝑡)  }

= �
1
𝑢2
�𝑀{𝐹1(𝑡)}𝑀{𝐹1(𝑡)}

= �
1
𝑢2
�𝑅1(𝑢) 𝑅2(𝑢) 

Where 𝐹1(𝑡) ∗ 𝐹2(𝑡)  is defined by 

𝐹1(𝑡) ∗ 𝐹2(𝑡)  = �𝐹1(𝑡 − 𝑥)
𝑡

0

 𝐹2(𝑥)  𝑑𝑥

= �𝐹1(𝑥)
𝑡

0

 𝐹2(𝑡 − 𝑥)𝑑𝑥 

 
d. Derivative theorem: Let R(u) be the Mo-

hand transform of 𝑀[𝑓(𝑡)] = 𝑅(𝑢) then  
 

𝑀[𝑓𝑛(𝑡)] = 𝑢(𝑛)𝑅(𝑢)

−�𝑢𝑛−𝑘+1𝑓(𝑘)(0)
𝑛−1

𝑘=0

 

 
e. Fractional derivative theorem: Let  

𝑀[𝑓(𝑡)] = 𝑅(𝑢) be the Mohand transform of 
a piece-wise continuous and exponential order 
function 𝑓(𝑡). The Mohand transform for the 
fractional order derivative of  the function 
𝑓(𝑡) under the classical Caputo fractional or-
der derivative operator of order 𝛼 > 0 is de-
vised as  

𝑀[𝐷𝑡𝛼𝑓(𝑡)] = 𝑢(𝛼)𝑅(𝑢) −�
𝑓(𝑘)(𝑡)
𝑢𝑘−𝛼−1

𝑛−1

𝑘=0

      (7) 

For further details and properties of Mohand 
transform see (Aggarwal & Chauhan, 2019; 
Aggarwal et al., 2018). 

The Homotopy Perturbation Method 

o illustrate the basic idea of this method, we 
consider the following nonlinear differential 
equation 
𝐴(𝑢) − 𝑓(𝑟) = 0  𝑟 ∈   Ω                               (8) 

with boundary conditions  

𝐵 �𝑢,
𝜕𝑢
𝜕𝑛
� = 0,   𝑟 ∈ Γ                                     (9) 

Subject to the initial condition: 
 
𝑢(𝑘)(0) = 𝑐𝑘                                                   (10) 
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where 𝐴 is a general differential operator, 𝐵 is 
a boundary operator, 𝑓(𝑟) is a known analytic 
function, and Γ is the boundary of domain  Ω. 
In general, the operator 𝐴 can be divided into 
two parts 𝐿  and 𝑁 where  𝐿 is a linear opera-
tor while  𝑁 is the nonlinear operator. Eq. (8) 
therefore can be written as follows: 
𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0                           (11) 

By the homotopy technique [24, 25] we con-
struct a homotopy    𝑣(𝑟,𝑝):Ω × [0,1] → 𝑅 
which satisfies  

𝐻(𝑣,𝑝) =  (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] 
+𝑝[𝐴(𝑣) − 𝑓(𝑟)] = 0  𝑝 ∈ [0,1], 𝑟 ∈ Ω (12) 
 
Or 
 
𝐻(𝑣,𝑝) = 𝐿(𝑣) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0)

+ 𝑝[𝑁(𝑣) − 𝑓(𝑟)] = 0     (13) 
 
where 𝑝 ∈ [0,1] is an embedding  parameter, 
𝑢0 is an initial approximation of Eq. (8) 
which satisfies the boundary conditions. 
From (12) and (13) we have  
 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0    
(14) 

𝐻(𝑣, 1) =  𝐴(𝑣) − 𝑓(𝑟)  = 0  
 

The changing in the process of  𝑝 from zero to 
unity is just that of  𝐻(𝑟,𝑝) from  𝑢0(𝑟) to 
𝑢(𝑟). In topology, this is called deformation 
and 𝐿(𝑣) − 𝐿(𝑢0), and 𝐴(𝑣) − 𝑓(𝑟) are 
called homotopic. 

Now, assume that the solution of equation 
(12) and (13) can be expressed as 
  
𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯⋯                     (15) 
 

The approximate solution of Eq. (3.1) can be 
obtained by setting  𝑝 = 1 
 
 𝑢(𝑥, 𝑡) = lim

𝑝→1
𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯⋯ (16) 

The Problem with the Solution 
Algorithm 

We consider the following fractional Black-

Scholes (1) of the form  

𝜕𝛼𝑢
𝜕𝑡𝛼

+
𝜎𝑥2

2
𝜕2𝑢
𝜕𝑥2

+ 𝑟(𝑡)𝑥
𝜕𝑢
𝜕𝑥

− 𝑟(𝑡)𝑢] = 0, 

        (𝑥, 𝑡) ∈ ℝ+ × (0,𝑇), 0 < 𝛼 ≤ 1   

Firstly, applying the Mohand transform on 
both sides of (1) subject to initial condition 
(2), we have 

𝑀[𝑢(𝑥, 𝑡)] = 𝑢𝑢(𝑥, 0) 

  + 𝑢−𝛼𝑀 �
𝜎𝑥2

2
𝑢𝑥𝑥 + 𝑟(𝑡)𝑥𝑢𝑥 − 𝑟(𝑡)𝑢�  (17) 

By operating the inverse Mohand transform 
on both sides in (17), we have 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) −𝑀−1[ 𝑢−𝛼𝑀[
𝜎𝑥2

2
𝑢𝑥𝑥 

              + 𝑟(𝑡)𝑥𝑢𝑥 − 𝑟(𝑡)𝑢]�                      (18) 

Now, applying the (HPM) we get 

�𝑝𝑛𝑢𝑛  (𝑥, 𝑡) = 𝑢(𝑥, 0)
∞

𝑛=0

 

−𝑝�𝑀−1 �𝑢−𝛼𝑀 ��𝑝𝑛𝐻𝑛(𝑢)
∞

𝑛=0

���  (19) 

where  

𝐻𝑛 =
𝜎𝑥2

2
𝑢𝑛𝑥𝑥 + 𝑟(𝑡)𝑥𝑢𝑛𝑥 − 𝑟(𝑡)𝑢𝑛] 

Equating the corresponding power of 𝑝 on 
both sides in equation (19), we have  

𝑝0:𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0),  

𝑝1:𝑢1(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻0(𝑢)]) 

𝑝2:𝑢2(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻1(𝑢)])         (20)  
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                       ⋮ 

𝑝𝑛:𝑢𝑛(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻𝑛−1(𝑢)]) 

So, that the solution 𝑢(𝑥, 𝑡) of the problem is 
given by  

𝑢(𝑥, 𝑡) = lim
𝑛→∞

�𝑢𝑛(𝑥, 𝑡)
𝑛

𝑛=0

 

APPLICATIONS 

In this section, we discuss the implementation 
of the proposed method. 

Example  5.1. We consider the following frac-
tional Black-Scholes option pricing equation 
as follows: 

𝜕𝛼𝑢
𝜕𝑡𝛼

=
𝜎𝑥2

2
𝜕2𝑢
𝜕𝑥2

+ (𝑘 − 1)
𝜕𝑢
𝜕𝑥

− 𝑘𝑢], 

 0 < 𝛼 ≤ 1  (21) 

subject to initial condition  

𝑢(𝑥, 0) = max(𝑒𝑥 − 1, 0)                           (22) 

Applying the Mohand transform on both sides 
of (21) subject to initial condition (22), we 
have 

𝑀[𝑢(𝑥, 𝑡)] = 𝑢𝑢(𝑥, 0) 

+ 𝑢−𝛼𝑀[𝑢𝑥𝑥 + (𝑘 − 1)𝑢𝑥 − 𝑘𝑢] (23) 

Operating the inverse Mohand transform on 
both sides of (23), we have 

𝑢(𝑥, 𝑡) = max(𝑒𝑥 − 1, 0) + 𝑀−1[ 𝑢−𝛼𝑀[𝑢𝑥𝑥
+ (𝑘 − 1)𝑢𝑥 − 𝑘𝑢]� 

Now, applying (HPM) 

∑ 𝑝𝑛𝑢𝑛  (𝑥, 𝑡) = max(𝑒𝑥 − 1, 0)∞
𝑛=0 + 

  𝑝�𝑀−1 �𝑢−𝛼𝑀 ��𝑝𝑛𝐻𝑛(𝑢)
∞

𝑛=0

��� (24) 

where  

𝐻𝑛 = 𝑢𝑛𝑥𝑥 + (𝑘 − 1)𝑢𝑛𝑥 − 𝑟𝑘𝑢𝑛] 

Equating the corresponding power of  𝑝 on 
both sides in equation (24), we have 

𝑝0:𝑢0(𝑥, 𝑡) = max(𝑒𝑥 − 1, 0),  

𝑝1:𝑢1(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻0(𝑢)]) 

     = −max(𝑒𝑥, 0)
(−𝑘𝑡𝛼)
Γ(𝛼 + 1)

+  max(𝑒𝑥 − 1, 0)
(−𝑘𝑡𝛼)
Γ(𝛼 + 1) 

𝑝2:𝑢2(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻1(𝑢)]) 

       = −max(𝑒𝑥, 0)
(−𝑘𝑡𝛼)2

Γ(2𝛼 + 1) 

+ max(𝑒𝑥 − 1, 0) (−𝑘𝑡𝛼)2

Γ(2𝛼+1) 

                       ⋮ 

𝑝𝑛:𝑢𝑛(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻𝑛−1(𝑢)]) 

= −max(𝑒𝑥, 0)
(−𝑘𝑡𝛼)𝑛

Γ(𝑛𝛼 + 1)
 

+max(𝑒𝑥 − 1, 0)
(−𝑘𝑡𝛼)𝑛

Γ(𝑛𝛼 + 1) 

So that solution 𝑢(𝑥, 𝑡) of the problem is giv-
en by  

𝑢(𝑥, 𝑡) = lim
𝑛→∞

�𝑢𝑛(𝑥, 𝑡)
𝑛

𝑛=0

 

= max(𝑒𝑥 − 1, 0)𝐸𝛼(−𝑘𝑡𝛼) 

+max(𝑒𝑥, 0)�1 − 𝐸𝛼(𝑘𝑡𝛼)�  

where 𝐸𝛼(−𝑘𝑡𝛼) is a Mittag-Leffler function 
in one parameter. 

For the special case 𝛼 = 1, we get  
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𝑢(𝑥, 𝑡)  = max(𝑒𝑥 − 1, 0)𝑒−𝑘𝑡
+ max(𝑒𝑥, 0)(1 − 𝑒−𝑘𝑡) 

Which is an exact solution of Black-Scholes 
equation (21) for 𝛼 = 1 

 

 

 
Figure (1). (a) approximate solution 𝛼 = 0.5,  
(b) approximate solution 𝛼 = 1, and (c) exact solution 
for equation (21) 

Example 5.2. We consider the following frac-
tional Black-Scholes option pricing equation 
as follows: 

𝜕𝛼𝑢
𝜕𝑡𝛼

+ 0.08(2 + sin𝑥)2 𝑥2
𝜕2𝑢
𝜕𝑥2

+ 0.06𝑥
𝜕𝑢
𝜕𝑥

 

−0.06𝑢 = 0      , 0 < 𝛼 ≤ 1 (25) 

 

 

 

 

Figure (2). Comparison of approximate solution with 
exact solution at different times 𝑡 = 0.01,0.02,0.04,0.05  
for Eq.(21) with initial condition (22) with 𝛼 = 1. 
subject to the initial condition  

𝑢(𝑥, 0) = max(𝑥 − 25𝑒−0.06, 0)               (26) 
Firstly, applying the Mohand transform on 
both sides of (25), subject to initial condition 
(26), we have 
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𝑀[𝑢(𝑥, 𝑡)] = 𝑢𝑢(𝑥, 0) −  𝑢−𝛼𝑀[0.08 

   (2 + sin 𝑥)2 𝑥2𝑢𝑥𝑥 + 0.06𝑥𝑢𝑥 − 0.06𝑢](27) 

Operating the inverse Mohand transform on 
both sides of (27), we have 

𝑢(𝑥, 𝑡) = max(𝑥 − 25𝑒−0.06, 0) 

                 −𝑀−1[ 𝑢−𝛼𝑀[0.08
 

 (2 + sin 𝑥)
2
𝑥2𝑢𝑥𝑥 

                   +0.06𝑥𝑢𝑥 − 0.06𝑢 
Now, applying (HPM) 

�𝑝𝑛𝑢𝑛  (𝑥, 𝑡) = max(𝑥 − 25𝑒−0.06, 0)
∞

𝑛=0

 

     −𝑝�𝑀−1 �𝑢−𝛼𝑀 ��𝑝𝑛𝐻𝑛(𝑢)
∞

𝑛=0

���        (28) 

where  
𝐻𝑛 = 0.08

 
 (2 + sin 𝑥)

2
𝑥2𝑢𝑥𝑥 + 0.06𝑥𝑢𝑥

− 0.06𝑢 

Equating the corresponding power of  𝑝 on 
both sides in equation (28), we have 

𝑝0:𝑢0(𝑥, 𝑡) = max(𝑥 − 25𝑒−0.06, 0),  

𝑝1:𝑢1(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻0(𝑢)]) 

     = −𝑥
(−0.06𝑡𝛼)
Γ(𝛼 + 1) +  max(𝑥 − 25𝑒−0.06, 0) 

         
(−0.06𝑡𝛼)
Γ(𝛼 + 1)  

𝑝2:𝑢2(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻1(𝑢)]) 

    = −𝑥
(−0.06𝑡𝛼)2

Γ(2𝛼 + 1) +  max(𝑥 − 25𝑒−0.06, 0) 

      (−0.06𝑡𝛼)2

Γ(2𝛼+1)  
      ⋮ 
𝑝𝑛:𝑢𝑛(𝑥, 𝑡) = 𝑀−1( 𝑢−𝛼𝑀[𝐻𝑛−1(𝑢)]) 

   = −𝑥
(−0.06𝑡𝛼)𝑛

Γ(𝑛𝛼 + 1) +  max(𝑥 − 25𝑒−0.06, 0) 

 
(−0.06𝑡𝛼)𝑛

Γ(𝑛𝛼 + 1)  

So that solution 𝑢(𝑥, 𝑡) of the problem is giv-
en by  

𝑢(𝑥, 𝑡) = lim
𝑛→∞

�𝑢𝑛(𝑥, 𝑡)
𝑛

𝑛=0

 

              = 𝑥(1 − 𝐸𝛼(−0.06𝑡𝛼) 
               
              +max(𝑥 − 25𝑒−0.06, 0)𝐸𝛼(−0.06𝑡𝛼) 

where 𝐸𝛼(−𝑘𝑡𝛼) is a Mittag-Leffler function 
in one parameter. 

For the special case 𝛼 = 1, we get  

𝑢(𝑥, 𝑡)  = 𝑥(1 − 𝑒0.06𝑡, 0)
+ max(𝑥 − 25, 0)𝑒−0.06 

Which is an exact solution of Black-Scholes 
equation (25) for 𝛼 = 1 

 

 

 
Figure (3). (a) approximate solution 𝛼 = 0.5, (b) ap-
proximate solution 𝛼 = 1, and (c) exact solution for 
equation (25)-(26) 
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Figure (4). Comparison of approximate solution with 
exact solution at different times 𝑡 = 0.01,0.02,0.04,0.05  
for Eq. (25) with the initial condition (26), with 𝛼 = 1. 

 

Figure (5). Comparison of the solution for equation 
(21)-(22) and equation (25)-(26) with 𝛼 = 0.5 at time 
𝑡 = 0.01 

DISCUSSION 

Figures (1) (a and b) and (3) (a and b) display 
the change in the solution behaviors when 
𝛼 = 1 and 0.5  respectively. In both subfigure, 
we see that the approximate solution is very 
close to the exact solution subfigure (c) of (1) 
and (3). 

Further, Figures (2) and (4) show the compar-
ison of the exact solution with the (HPMTM) 
solution at 𝛼 = 1  and 𝑡 = 0.01, 0.02, 0.04  and 
0.05  for equations (21)-(22) and (25)-(26) re-
spectively. It is clear that the (HPMTM) solu-
tions seem to coincide with the actual solu-
tion. Finally, Figure (5) provides a compari-
son of (21)-(22) and (25)-(26) with 𝛼 = 0.5  
and 𝛼 = 0.01, where it can be concluded that 
the difference between the solution of frac-
tional Black-Scholes (21)-(22) and the solu-
tion of fractional Black-Scholes (25)-(26) is 
due to the difference in 𝜎   in both equations. 

CONCLUSION 
In this paper, the homotopy perturbation 
method was coupled with Mohand transforms 
(HPMMT) and successfully applied to get the 
approximate analytical solution of the frac-
tional Black-Scholes option pricing equation 
in terms of convergent series with easily 
computable components. The results show 
that this method is a powerful tool for obtain-
ing exact and approximate analytical solutions 
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of fractional Black-Scholes European option 
equations. 

Table (1). Mohand transform of some basic mathemat-
ical functions 

S.N. 𝐹(𝑡) 𝑀[𝐹(𝑡)] = 𝑅(𝑢) 
1 1 𝑢 
2 𝑡 1 
3 𝑡2 2!

𝑢
 

4 𝑡𝑛,𝑛 ∈ ℕ 𝑛!
𝑢𝑛−1

 
5 𝑡𝑛 Γ(𝑛 + 1)

𝑢𝑛−1
 

6 𝑒𝑎𝑡 𝑢2

(𝑢 − 𝑎) 

7 sin𝑎𝑡 𝑎𝑢2

(𝑢2 + 𝑎2) 

8 cos 𝑎𝑡 𝑢3

(𝑢2 + 𝑎2) 

9 sinh 𝑎𝑡 𝑎𝑢2

(𝑢2 − 𝑎2) 

10 cosh 𝑎𝑡 𝑢3

(𝑢2 − 𝑎2) 
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