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?_II}T,}CI;{% Abstract: In this paper, we may obtain diagram groups for any given graphical
STO presentation. These groups can be viewed as the fundamental group of squire
Received: complexes. Let *S=<a;,a, as aza; = a;1<i<j<4> be a semigroup

5 January 2023 presentation. The problems are divided into several cases according to the length of
words, with all vertices in *K; being words of the length i. The main aim of this

Accepted: article is to construct the connected square complex graph *K; of a diagram group

7 June 2023 from semigroup presentation *S. Then we will prove 4Ki+1 is the covering squire
complexes for *K; for all i € N. Then the covering space is identified for all

Keywords: connected square complex graphs by picking normal subgroups from the diagram

Diagram  groups, group that was previously obtained from the semigroup presentation. This research

Semigroup introduces how to associate H with the covering space 4KHi, how to determine the

presentation, generators for covering space 4KHi, and what 4KHi looks like.
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1997; Guba & Sapir, 2006a, 2006b; Guba,

INTRODUCTION 2002; Guba & Sapir, 1999; Guba & Sapir,

2002) presented an equivalent complex to

The first definition of diagram groups was K(S) and also referred to it as the Squire
introduced by (Meakin & Sapir, 1993); complex. Monoid pictures were studied by
however, their student, (Kilibarda, 1994, (Pride, 1991, 1993, 1995), whereas the notion
1997), had worked out the first result on a of the pictures was attributed to (Guba, 2002).
diagram group. Her work proved that every Guba used transistors with top label and
equivalence class of semigroup diagrams bottom label and straight vertical wires, while
containg a unique diagram without dipoles. Pride used a circle with two distinguished
Such diagrams are called ‘reduced’. Further base points (Pride, 1993) or one distinguished
results about diagram groups were discussed base point (Pride, 1991) and arbitrary curves,
in the published work of (Guba & Sapir, respectively. (Nieveen & Smith, 2006)
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discussed the ‘covering spaces’ and
subgroups of free groups. (Gheisari &
Ahmad, 2010a, 2010b) managed to obtain the
generators and the spanning tree in graphs
from diagram groups over semigroup
presentation using the lifting method.

Diagram groups are one form of geometrical
objects called "semigroup diagrams". Each
diagram group is determined by an alphabet
X, containing all possible labels of edges,
a set of relations r={U;=V;, i=12,..},
containing all possible labels of cells, and a
word W over X- the label of the top and
bottom paths of diagrams. Diagrams can be
considered 2-dimensional words, and diagram
groups can be considered a square
dimensional analogue of a free group.

If a group is representable by diagrams (that
is, it is a subgroup of a diagram group), then
one can use the geometry of planar graphs to
deduce certain properties of the group. (Guba
& Sapir, 1997) viewed diagrams as 2-
dimensional words; they developed a calculus
called combinatorics on diagrams. The
geometry of diagrams allows one to consider
many homomorphismk from diagram groups
into the group of piecewise linear
homeomorphisms of the real line. Thus, a
connection between groups is represented by
diagrams, and groups are represented by
piecewise linear functions. This connection
can be used in both directions.

Let S =< X:r > be a semigroup presentation.
Then the diagram group D(S,W) can be
obtained, where W is a positive word on X, as
given by (Guba & Sapir, 1997). The square
complex, associated with  semigroup
presentation S, is denoted by K(S) with a
binary operation, [a]. [B] = [aB], and forms a
group named the ‘fundamental group’ with
the basepoint W, denoted by m; (K(S), W),
where a, 3 are two closed paths. (Kilibarda,
1994, 1997) proved that every diagram group
over semigroup presentation S is isomorphic
to the fundamental group of 2-complex
associated with this presentation. It will be

demonstrated in this article that the square
complex K obtained from S is actually a union
of K;, where K; contains all vertices of length
i.

As with square complexes, it is possible to
obtain all connected square complex graphs
*K; for all i € N from semigroup presentation
'S =< a;,ayas,a,:3; = a;1<i<j<4>,
depending on the length of the words. Then
the projection mapping between ‘K; and
*K;,1 can be obtained. It is important to note
that any square complex will contain vertices,
edges, and 2-cells. A square complex without
2-cells is simply a graph. From those
semigroup presentations the covering space
for all connected square complex graphs *K;,
i €N can be determined by picking groups
from the resulting diagram group.

As with a group, it is sufficient to determine
the group’s generators. These generators can
be obtained from the square complex by
identifying the maximal subtree T. Fix a
vertex v, where v belongs to square complex
graph *K;, i €N, and let e be an edge such
that e ¢ T, then Yi(e)e(Y‘l:(e))_l is the
generator, where Yj), Yr(eyare paths in the
maximal subtree T from v € 4Ki, i €N, to the
initial and terminal of e, respectively.

PRELIMINARIES

In this section, we introduce some concepts,
terminologies, and theorems, such as
semigroup presentation, graphs, and square
complexes that are necessary to highlights.

Definition 1: Let X be the set of alphabets. A
semigroup presentation S is a pair < X:r >,
where r € X X X. An element x € X is called a
‘generating symbol’; while an element
(U,V) €ris called a ‘defining relation’, and
is usually written as U = V. The semigroup

defined by a presentation is X+/ ~, Where = is
the smallest congruence on X* containing r.
More generally, a semigroup S is said to be
defined by the presentation <X:r> if

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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S= X+/ ~. Thus, elements of S are in one-one
correspondence with congruence classes of
words from Xt representing elements of S.
For the sake of simplicity, it will be always
assumed that the set of relations r in every
semigroup presentation S =< X:r > satisfies
the following condition: if (U,V) €r, then
(V,U) ¢r.

Definition 2: A graph I consists of five pairs
(E,V,i,t,—1) where V and E are two
disjoint finite sets. Set V is known as the set
of vertices; while E as the set of edges.
Symbols i,Tt,—1 are functions:

i: E—>V, TtwE—-V , -1:E—>V
such that:
ile)=t(e ™) ,1(e) =i(e™) ,exel Ve

€ E.
If e is an edge, then i(e) is called the ‘initial
vertex’ of e, and T(e) is called the ‘terminal
vertex’ of e.

Definition 3: A graph I is connected if and
only if V(vy,v,) €V, then there exists a
path vy, such that i(y) = vyand t(y) = v,.
That means a graph I is said to be connected
if any two vertices can be joined by a path.

Theorem 1 (Cohen, 1989; Rotman, 1995;
Serre & Serre, 1980) : Let K be a connected
2-complex and fix a vertex v. The algebraic
system

T (K v) = {[a] : i(a) = t(a) = v}

with binary operation [a] - [B] = [af}] forms a
group named the first fundamental group of K
with base point v. The identity is [1,], while
the inverse [a]™! = [a71].

Definition 4: A tree T in I' is a connected
graph without a cycle (loop). If a tree T
contains all vertices of graph I', then T is
called a maximal subtree or spanning tree.
Geodesic in a tree is a path without
backtracking, that is if y and A belong to I'
are two paths such that i(y) =i(A)and
T(y) = t(A), theny = A..

Definition 5: A square complex K is a pair
< IR >, where I' is a graph and ‘R is a set of
cyclically reduced closed paths in I'. Set I' is
called the skeleton of T and denoted by K™,
also the elements of r are called defining
paths. This square complex is finite if T is
finite, and it is connected if T is connected.

Definition 6: Let K' =<T":R' > and
K =<T:R > be square complex graphs. A
mapping P : K’ — K is a mapping of square
complexes graph from I’ to I, such that
Y(p) €T foreach p eT.

Definition 7: Let Y :K =<T":R' > -
K=<T:R> be a mapping of square
complexes. Then, { is said to be locally
bijective if:

1. It is locally bijective of graphs.

ii. [ consists of all the lifts of elements of R.
(Note, in particular, that all lifts of elements
of R must be closed).

Theorem 2 (Rotman, 2002; Rotman, 1995):
Let Y :K' — K be a mapping of square
complexes graphs. If v is a vertex of K such
that Y (¥) = v, then ¥ is said to lie over v. Let
a be a path in K with i(a) = v and suppose ¥
lies over v. A path @ in K’ is said to be a lift
of aat ¥V if Y(@) = a.

Theorem 3 (Rotman, 2002; Rotman, 1995):

Let ¢y :K' — K be a mapping of square

complexes graphs. Then the following are

equivalent:

1. The map Y is locally injective.

ii.  Foreach path o in K, if ¥ lies over i(a)
, then o has at most one lift at ¥.

Theorem 4 (Rotman, 2002; Rotman, 1995):
Let ¢:K' = K be a mapping of square
complexes graphs. Then the following are
equivalent:
i.  The map Y is locally surjective.
ii.  For each path o in K, if ¥ lies over
i(a), then o has at least one lift at V.

Definition 8: If y: K' > K is a locally
bijective map, then K’ is called a covering

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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complex (covering space) of K. The mapping
Y is called the covering map (covering
projection).

Definition 9: Let S =< X:r > be a semigroup
presentation and U is a word on X, then
i.  If U= a then, €(a) denotes the plane gph
consisting of one edge with the initial
(terminal) vertex coinciding with the
initial (terminal) vertex of the edge, as
shown in Figure 1.

Figure (1). Graph £(a)

ii. If U=ajay..a,, then &(U) =¢e(a;) +
e(ay) + -+ ¢€(a,) is called the trivial
(U,U) —diagram, and the plane graph as
in Figure 2.

¢ & o - ——0

Figure (2). Trivial (U, U) —diagram

iii. If U=1 the empty diagram is denoted
e(1).

Definition 10: Let U and V be positive
words. Let us take the graphs €(U) and €(V)

such that i(a(U)) =i(e(V)) and r(a(U)) =
t(e(V)) and satisfy the following condition:

v

Figure (3). Elementary (U,V)-diagram

Definition 11: Let M = N be a relation and
let (UUM - N,V) be an edge of I (ie.
rewriting system). Then, the graph e(U) +
Ypmn +&(V) is called the atomic diagram,
corresponding to an edge given by Figure 4.

M
u 14
i ———4 T
\\
N

Figure (4). Atomic diagram

Definition 12: Any plane graph which is
either equal to €(U) for some word U or is a
concatenation of atomic diagram is called a
semigroup diagram. If the label of the top
path of a diagram is U and the label of the
bottom path is V, then the diagram is called
(U,V) —diagram.

Definition 13:(Rotman, 2002; Rotman, 1995) Let
Q:K' - K be a mapping of graphs and
v’ € V'. Consider star(v'), suppose that we
break up star(v') to two component where
star (V') = v

star (v') = star(v*) U star(¥)
such that

star (v*) = {e € star (v') : Q(e) # 1,}
and
star (V) = {e € star (v') : Q(e) = 1, }.
So, we define here () is a locally injective on
star(v') if it is an injective on star (v*). Note
that if star(v') =@ and Q is a locally
injective, then clearly (1 is injective.

Definition 14: Let Q : K' —» K be a mapping of
square complexes graphs. If ¥V is a vertex in
K’, then there is induced monomorphism

Q (K, v') - my (K, Q(v’))
defined by Q*[a'] = [Q(a’)]. The mapping
Q*is an injective if Q is a locally bijective.
ImQp =H

Let H be a subgroup of m;(K(S),W) fix a
vertex O in the connected square complex

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.



Al-Mukhtar Journal of Sciences 38 (2): 140-149, 2023

graph. Now, the covering space 4I(Hi will be
constructed and then to obtain the covering
map Qy: 4I(Hi — *K; in a similar way. Let v
be a vertex of *K; and consider the collection
of paths

P, = {[a]:i(a) = O, () = v}.

3 Constructions Of The General Square
Complex Of Diagram Group

In this section we obtain the general method
to determine the connected square complex of
the diagram group over semigroup
presentation 'S =< a,,a,,a3,a,:2; = a; 1 <
i <j<4>. Note that the connected square
complex graph from S is collections of
subgraphs. The square complex graph
*K;,1 € N obtained from *S is a union of *K;
connecting all vertices of length i and
respective edges.

For example, in Figure 5, the connected
square complex graph K, obtained from
graphical presentation with four generators as
in Figure 5.

ay

€agay = (l.ay=ay1) .»/t"\ea' az = (., ag1)

Figure (5). The connected 2-complex graph 4K 1

while K, is

al2a,

2 ~~ 2
e - ik, O3

'(I a
2 2 7 23
a; &2 - ’ ¥

>
asa;
€a3.a.a, = (A3:03 a3, 1)

et
az

Figure (6). The connected 2-complex graph ‘K,

Note that ‘K,is four copies of ‘K; and
each vertex in each copy are joined
together respectively. Likewise with four
copies of ‘K,, the square complex graph
*K; may be obtained by repeating similar
procedures with the result *K, and so on.
From those diagrams we can conclude
some properties.

LEMMA 3.1 Let 'S =< aq,d3,a3,34:3; =
a;1<i<j<4> be a graphical
presentation. A connected square complex
graph *K,, contains 4 vertices.

PROOF: By induction, for n = 1 the number
of all vertices in *K; is 4. Assume the number
of all vertices in *K is 4X where n = k. Now
we will prove that the number of all vertices
in *Ky,, is 4571, By the definition of *Ky,, is
four copies of *Kj and assumption, then the

number of all vertices in *Kj,q is 44K =
4k+1'

LEMMA 3.2

Let 'S=<ay,a,asa,:a; = 3;;1<i<
j<4> be a graphical presentation. A
connected square complex graph ‘K, ., is
four copies of *K,. Thus, if there is e,
edges in *K,, then the number of edges in
*Kps1is 4e, plus all edges between
squares in ‘K,,;, which is ey,q =
4e,+4".

LEMMA 3.3 Vertices U and V are connected
if and only if L(U) = L(V).

LEMMA 34 If L(U) = L(V) then
1, (K'(S), U) = m, (K'(S), V)

LEMMA 3.5 Vertices of 4Kn are all words
of length n.

The following theorem addresses the issue of
covering graph.

MAIN THEOREM 1: A connected square
complex graph *K;4is the covering space for
*K; foralli € N.

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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PROOF: Our claim is to prove *Kip1is
the covering space of *K;, for all i € N.
We will confirm by induction.

fori = 1. The aim is to confirm that 4K2 is the
covering graph for *Kj.

It is noticed that the square complex graphs
K, and *K, are connected since that for any
two vertices taken in these square complex
graphs, there will be a path connecting them.
So, let p : *K, = *K; defined by:

p(a%) = p(aza;) = p(azay) = p(aza;) =
o(araz) = p(a2) = pasay) = p(agay) =
o(aras) = plazas) = p(a3) = plagay) =
a;’(’ala4) = p(azay) = p(azay) = p(ai) =
dy,

€,.2 €.2 €,.2

p(eaﬁ alaz) p(ea1 azal) p(ea1 a3a1) =
p(ea1 a4a1) - eal,aza
p(ealaz,a1a3) = p(eaﬁ,a2a3) = p(ea3a2,a§) =

p(ea4a2,a4a3) = €a,,a3>

p(eala3,ala4 = p(eaza3.aza4) =

p(ea3 a3a4) = p( a4a3 a4) = ea3,514’

p(eala4 31) p(ea2a4 azal) = p(ea3a4,a3a1)

= p(ea4 a4al) = ea4 a;

1a, p(ea1 a3a1) =1, p(ea1 a3al)
=1, p(eaﬁ,aé;al) =1,

p(ea1 ala3) =1a,

p(ea1 azal) =

In order to prove that *K;;, is the covering
graph of *K;, it must be proved that p is a
locally bijective for all vertices. It is found
that

Pstar(a?): {eal ajay’ €a? a a5’ €a2,a 0,2 €a2 a,a,2 €a2 a3a, CaZaga, } - {ea1.az’ 131' 131’ 1a1’ 131' 131}

pstar(alaz)- {ea132,a133' ealaz,a1a4; ealaz,az' e31312':'51332' ealaz,a432; e3132'a4a132} -

{eaz,ay 13132' 13132' 13132’ 13132’ 13132}

It can be seen that in this case p is not a
locally bijective. This part gets even more
complicated. So, p is redefined to prove it is a
locally bijective. Indeed, there are two cases
to define the above p; the first case is
p(eWa,Wb) = e,p, while the second case is

p(eaw‘bw) = 1w, and hence can be ignored
(refer to Definition 13).

pstar(al) {eal ajap } - {eal,az}

Pstar(ajaz)* {ealaz,ala3} - {eaz,a3}

So, when p is a locally injective and locally
surjective, consequently p is a locally
bijective. Therefore ‘K, is the covering
complex for *K,. This finding, in turn, bears
evidence that the previous theorem (i.e., *K;, 4
is the covering graph of *K; for i € N) is
true.

For i = k— 1, assume ‘K is the covering
space for K1

Now for i = k, the aim here is to confirm that
*Ki41 is the covering complex for *Ky. It is
noticed that the square complex graphs ‘Kj
and ‘Ky,, are connected, since that for any
two vertices taken in these square complex
graphs, there will be a path connecting them.
So it remains here to prove that *Ky,, is the
covering complex for *Ky. To attest that, let
p *Kyyq = Ky defined by p(Wa) = a, where
W is a word on {a;,a,,az, x4} of length k,

a'b € {aliaZJ 33'34}' p(eWa,Wb) = ea,bi and
p(eaW,bW) = €3b-

To prove p is a locally bijective, it must be
proved that p is locally bijective for all
vertices. Here, the same procedure taken
previously for i =1 will be repeated. So,
Pykis * Star (ak*') - star (a¥),i=

{1,2,3,4} is a locally injective and locally
surjective; thus, p is a locally bijective. This
finding, in turn, bears evidence that the

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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previous theorem (i.e. *Ky,, is the covering
complex for *K) is true.

The following theorem highlights the

technique of creating normal subgroup of one

generator and discusses how to cover
4

complex Ky, for the connected square

complex ‘K.

MAIN THEOREM 2: Consider a connected
square complex graph %K, as shown in Figure
1, such that G = m;(*K;,a;) contains vy,
where y; =< €, a,€a,,a,€a5,,8a,a, > If Hp
is the smallest normal subgroup of G
containing < y? >, then the covering space
Ky | 1s an octagonal shape.

PROOF: Use the notion of H(By) =
H(B,) < [B.B, '] € H. From ‘K,
1, (*K;) can be obtained. Fix a vertex a; in
*K,. Now, for any normal subgroup of
m,(*Ky,a,), there exists a unique covering
space. Start by choosing basic H[a] where a
is a path such that i(a) = a;,t(a) =v for
every vertex v in ‘Kj. As a result, these basic
H[1], H[eal‘az], and H[eal,azeaz‘as] will be
selected, and then all possible edges can be
determined, as shown in Table 1.

Table (1). Edges from H[1] in 41(1.[1

Edges Initial Terminal
(H[l]' ea1,az) H[l] H[eauaz]
(H[1], &5, a,) H[1] Hlea,q,]

Since pH[H[l]] =a; and star(a;) =2,
then star(H[1]) = 2. Consider a vertex
a,; the vertex in 4KH1is H[1], and H[1] in
4KH1 maps to a;. From a; = a, in 4K1, the
vertex in 4KHzlis H[eal,az], and the edge is
(H[l] ,eal,az). H[eal,az] in 4KH1maps to a, in
*K4, as shown in Figure 7.

Hley: aies aies aibeinBaiaitaiaga.]

J = H[é’r n]

/’

H[1]

Px

Figure (7). Mapping from Ky , to K,

From a; toa,toas, the vertex in 4KH1
is H[eabazeaz&] and the edge is
(H[eal‘az] ,eal,azeaz,%). The vertex in
4KH1maps to a; in °‘K;. Now from
a; toa, toaztoa,, the vertex in 4KHzlis
Hlea, a,€a,a:€a;2,] and the edge is
(H[eapaz ea2,"313] ’ ea1'az eaz,a3 ea3'a4)' The
vertex in "Ky, maps to a, in *K,. Again from
a; to a, to as to a, to a; in 'K, the vertex in
4 .

Ky, is H[eal,azeaz,a3ea3,a4] and the edge
is

(H [eal,az eaz,a3 ea3,a4] ) eal,az eaz,a3 ea3,a4ea4,a1)'
This vertex in 4KH ,maps to a; in 4K1. Since
H; is the smallest normal subgroup of G
containing

< y? >, a duplicate is needed to get all the
vertices. So, the right cosets are as the
following:

e HJ[1]

° ea1,az]

° ea1,:':12 az,az

e?111,512 az,az ea3,514 ea4'a1]

LI I = T

H|

[

[eal,az eaz,a3 ea3,a4]

|

[ea1 dp ea2 asz ea3 dg ea4 aq eal,az]

H [eabaz eaz,a3 ea3,a4 ea4'a1 ea1,"312 eaz,a3 e33,:':14]

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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The edges are:
] ea1 az)
(H e@11 az] ea1'azeaz,33)

[1
[
[eabaz €a,, 33] €a1,a,€az,a; ea3,a4)
[
[

e o o o o o
—~
II

(H [1]’ eaz,a3 ea3,a4 ea4,a1 eal,az eaz,a3 )'

(H ea1,az eaz,a3 e?113,514] e511'512 eaz,a3 ea3'514 ea4,a1)

(H ea1,"312 eaz az ea3,:':14 ea4'a1 ea1,32 ea2"'313 633,34634'31631,32)
(H [eabaz eaz,a3 ea3,514 ea4'a1 e?111,512 ] 4 e511'512 eaz,a3 ea3'a4 ea4,a1 e511'512 eaz,a3 )

(H [eapaz ea2"'313 e33,34ea4'a1ea1,32 ea2"'313]' ea1,32 ea2,:':13 ea3'a4ea4,a1 ea1'az ea2,"313 ea3'a4)

So, Ky , will look like the depicted form in Figure 8, where

i el = eaz,ag
® €2 = €5,a;€;a,

[ ] =
€3 €a,,a;€a3,2,€a,,2;

[ ]
D

N
I

= €a,,a3%a3,2,€a,,2, a2,

[ J
)
ul
I

= €a,,a3€a3,a,€a4,2,€a;,2,€az,a3

[ ] =
€6 €a,,a3€a3,a,€a,,a, €a;,a,€a;,a3€a3,a,-

Now let  pf: “Ky, o'K; defined by
pi(H[1D) = a;, pu(H[eap]) =

a, b) pH(H[
viewed as locally bijective, so the covering

a],ea,b) = e,p. This map can be

complex Ky  Will be an octagonal shape.
Since a; is a vertex of the connected square
complex *K; and H[1] lies over a;, then
PH: T (4KH1: H[1]) - m (4K1: a) is
injective. Upon that, it is found that
P 1'[1(4KH1,H[1]) - Impy=H As a
result, H = ;(*Ky H[1]) can be viably
considered as a subgroup of G = 1, (‘Ky,a,).
Now, we determine the generators for the
fundamental group m; (‘Ky H[1]) by using

maximal subtree technique, choose a maximal

So
T(Ky,,) = (H[1]

subtree T(4KH1) for 4KHland suppose that
T(4KH1) starts from H[1].

H[eﬂl.ﬂ_’:] H[eaL,agel]

H[]-] H[eal,RQEZ]

i H[eaha:eg]
.
Vi

/

’H[enl,ageﬂx]

H[eﬂl’azeﬁ] N

H[enl,ages] ‘

Figure (8). Covering complex *Ky )

Y eal,az)(H[eal,az] Y eal,az eaz,a3)(H [eal,az eaz,a3]: eal,az eaz,a3 ea3,a4)

(H [eal,az €aya; e?113,514] ’ eal,az €aya3€az,a,Ca,a; ) (H [eal,az €aya3€aza,

ea4,a1]l ea1,32 eaz,a3 ea3,a4 ea4,a1 eal,az ) (H [

1],eal,azeaz,%ea3,a4ea4,a1eal’azeaz,as). Hence, the edge

(H[1] ,eal,azeaz,%ea3,a4ea4,aleal’azea2,asea3,a4) ¢ T(4KH1). Consequently, T(4KH1) will look like

the depicted form in Figure 9.

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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H[eal,a;]

H[eal.ﬂ: l‘J.]
HI1] [eqy,a,7-]
H[inla:l’é] H[enl,a:z'g]
H[enl.agl‘s H[eal,nglk]

Figure (9). Maximal subtree T(*Ky )

CONCLUSION

The paper introduced how to construct the
connected 2-complex graph ‘K;,i € N of a
diagram group from semigroup presentations
'S =< a;,a,,a3,a4:2; = a;l<i<j<4>.
The paper also showed that the square
complex graphs were connected according to
the length of words, and it proved that the
connected square complex graph K, is the
covering graph for *K;, for all i € N. The
article discussed how to determine the
covering space 4KHi for all connected square
complex graph K, i €N by selecting normal
subgroups from the diagram group. This
paper also presented some diagrams.
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