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Abstract: The volume integral of Riemann flux in the discontinuous Galerkin (DG) method is
introduced in this paper. The boundaries integrals of the fluxes (Riemann flux) are transformed
into volume integral. The new family of DG method is accomplished by applying divergence
theorem to the boundaries integrals of the flux. Therefore, the (DG) method is independent of the
boundaries integrals of fluxes (Riemann flux) at the cell (element) boundaries as in classical
(DG) methods. The modified streamline upwind Petrov-Galerkin method is used to capture the
oscillation of unphysical flow for shocked flow problems. The numerical results of applying
totally volume integral discontinuous Galerkin method (TVI-DG) are presented to unsteady
scalar hyperbolic equations (linear convection equation, inviscid Burger's equation and Buckley-
Leverett equation) for one dimensional case. The numerical finding of this scheme is very
accurate as compared with other high order schemes as the weighted compact finite difference
method WCOMP.
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INTRODUCTION

There has been a surge of researches activities in
high order methods as spectral volume (SV)
method, spectral difference (SD) method, the
weighted essentially non-oscillatory (WENO)
method and (DG) method. Most of the
aforementioned methods have a common feature:
they achieve high order accuracy by locally
approximating the state variables (numerical
solutions) as high order polynomials inside the
element. While WENO method achieves a high
order accuracy by approximating the state
variables as high order polynomials over a stencil
(groups of cells or elements). In this work, we
concerned ourselves to the compact and weighted
scheme which is the DG method.

The DG method is introduced by Reed and ( Hill
in 1973) for neutron transport problems and

then developed for fluid dynamics by Cockburn
and Shu in series of papers among them
(Cockburn et al., 1989, Cockburn and Shu 1989,
Cockburn et al., 1990, Cockburn 2001). (Huynh
2007) introduced a flux reconstruction (FR)
approach, in which the formulation is capable of
unifying several popular methods including the
discontinuous Galerkin method, staggered-grid
method, spectral difference method and spectral
volume method into a single formula. The final
mathematical form of the discretized governing
equation is governing equation in the differential
form. After that, (Wang and Gao 2009) extended
(FR) approach to multidimensional flow and
unstructured mesh under the named lifting
collocation penalty (LCP) formulation. Therefore,
the differences between DG and other methods lie
in the definition of degrees of freedom (DOFs)
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and how the DOFs are updated (Wang and Gao
2009).

It is well known that the discontinuous Galerkin
method is as an efficient and low error magnitude
than the other methods. In the DG formulation,
the boundary flux is integrated over the boundary
of the cell or element as traditional methods like
finite volume (FV) methods. While for its
development the weighted function at the
boundary of the cell can be transformed into the
correction function g(&) for (FR) or lifting
coefficients a; ; for LCP  formulations.  Thus
g and a;; are dependent on the weighted
functions over the boundaries(Gao and Wang
2009, Wang and Gao 2009). Therefore the
weighted functions at the boundary play an
important rule for boundary flux calculation in the
DG method and its development. In general, there
are two types of flux integrals, the first one is the
volume integral of the physical flux over the
entire element domain, and the second type of
integral is the boundary integral of the Riemann
flux (Godunov flux) over the boundaries of the
elements (over the surface areas of the element).
This difficulty motivated us to introduce a new
family of DG methods independent of the
weighting functions at the boundaries. Therefore
no boundary integral is needed for this new
formulation.

The paper is organized as follows: Section 2
introduced the new DG method formulations. The
verification of the new formulation is introduced
in section 3. Finally, conclusion remarked is
introduced into section 4.

Totally Volume Integral (TVI) DG Method
Formulation

Space Discretization

For the convenience of discussion, a review for
DG semi-discretization for partial differential
equations (PDE) is introduced. This can be done
by firstly considering the conservation laws in
divergence form:

Q,+V-F=0. (1)

The numerical solution of Eqn. (1) is sought on
the computational domain Q subject to proper
initial and boundary condition. where Q is the
conservative variable and F is the conservative
flux vector.

In Egn. (1) Q and F are scalar or column,
representing scalar or system of equations. The
weighted residual formulation is obtained by
multiplying Egn. (1) by a scalar test function
(weighting function) W and integrating by parts
over the domain Q

[IWQ: = VW - F(Q)]d2 + [, .WF(Q) - ndl' =
0. 2

A discretization analogue of Eqn. (2) over each
element can be obtained by subdividing the
computational domain Q into N non-overlapping

N
elements 2 =kL_11!2h. By applying Egn. (2) to

each element Qp, the semi-discrete analogue of
Eqn. (2.2) over the computational grid yields:

Lo, |Wn 52k — VWi F(Qu) | d2n +
Jr, Wi F(Qp)-ndI}, = 0, ©)

I'y, denotes the boundary of the element Qy, and n
is outward vector normal to the boundary. Let Qp
and Wi, represent the finite element approximation
to the analytical solution Q and the test function
W respectively where Qp and W, are
approximated by a piecewise polynomial function
of degree k, which is continuous within each
element and discontinuous between the elements
interfaces.

Qn(x, 1) = £]27 0;Q;(6) and W, (x) =
A (4)

Where n is the dimension of the polynomial space
p* and @;is the basis of the polynomial. The
expansion coefficients Qj(t) and W; denotes the
degrees of freedom (DOFs) of the numerical
solution and the test function in element Q,
respectively. Thus the summation in eqgn. (3) is
equivalent to the following system of n equations
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Jo,l0Qc = Vo; - F(Q)] dy + [, #; F(Qn) -
ndl;, =0, 1<j>n, )

since the discontinuities are permitted at the
interfaces of elements in the DG method. Because
the approximated solution is discontinuous at the
element boundaries, the interface flux is not
uniquely defined. In this stage, the Riemann
fluxes used in the Godunov finite volume method
are borrowed.

The normal flux function F(Qp).n appearing in the
last terms of eqn(5) is replaced by a numerical
Riemann flux function Fy, = F(QL,Qr,n) that
depends on Q. and Qgr which are the
approximated solutions of the conservative state
variables Qn at the left and right side of the
element boundary, respectively. In order to
guarantee consistency and conservation, the
Riemann flux must satisfy the following

Fup = F(QL,Qr,N) = F(Qn).n and -Fy,= F(QL,Qr,-
n) =—F(Qn).n. (6)

In the present work, the Riemann flux is
approximated by using Lax and Friedrich (LF)
flux for nonlinear flux. This scheme is called
discontinuous Galerkin method of degree k as
given in the classical form, or in short notation
DG (k) method. The surface and volume integrals
in Eqn. (5) are calculated in case of DG method
by using 2k and 2k+1 order accurate Gauss
quadrature formulas, respectively.

In order to unify the integrals (surface integral and
volume integral), the totally volume integral of
the upwind flux scheme for DG method is used
for this purpose. The relation between the surface
and volume integrals for any vector A is given by
the divergence theorem as

A -ndl = ffv.Adv, (7)

where 7" and V are surface and volume of the
problem domain. The totally volume integral DG
method is accomplished by applying the
divergence theorem to the last term of Eqgn. (5)
and rearranging to give the following form

2Q
[y, [0 — Vo, F(Qn) + Vo, Fa +

V. Fup] dQ, =0, 8.3)

for one dimensional case Eqn. (8.a) can be written
as:

0Q  09j 0¢;
fnha[fpf e~ o F@n) + 5 Ry +
Fy
;52| day = 0. (8.b)

The Riemann or upwind flux vectors are
approximated by polynomial of order k as done
for the state variable in Eqn. (4). F(Qp) =

iz? iFi(Qh) Fup = iz? iFup,i' the last two
terms of Eqgns. (8.b) can be companied into one
term as follows

aQ 0¢; 09
Ja, [(Pja_th ——2@iF(Qn) + (a—xjfﬂi +
29
(p] %) Fup,i] d.Qh = 0. (9)

Equation (9) is the DG method in totally volume
integral form.

Coordinate Transformation

In order to achieve an efficient implementation,
all elements are transformed from the
computational space (x,y,z) into standard space
(¢,n, &). Consequently, all partial derivatives with
respect to the standard space are related to the
partial derivative in the computational space as in
the finite element methods. For one dimensional
case, the value of the x can be obtained as:
x = X2t %9, (). (10)
The derivative of x with respect to ¢ is obtained
as:

a_z =X; = §=1 Xj a

(11)

The derivatives of any function with respect to the
standard coordinate can be written as:
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a( ) _a()ax _3()
8¢~ ax 97  ox

xgwith|]| = (12)

|x¢ .
Where |J| is the determinant of Jacobian matrix.

Also, the derivatives of any function with respect
to physical coordinates can be written as:

o ) _
dx

6
7 Cewithl 7 = 16,

(13)
From equations (11) and (13), x; = 1/J,, with
n¢ = {x/13| = 1. Thus no negative values of the
Riemann flux Fy, = F(QLQrnp at the
boundaries. By substituting into Eqgn.(9) and
rearrangement yields:

aQp a(p]

f [on ot ac (pl({xF'(Qh)) + (aa(? 901

6 i

228) (CuFup,)| 4 = 0. (14)
Finally after the spatial discretization is
accomplished, equation (14) can be written into
the following form

d
ML= R(Q), (15)
where R(Q) is the residual and M is called the
consistent mass matrix

Time Integral

The semi-discrete equation as Egn. (15) can be
integrated in time using explicit methods. The
explicit three-stage third-order TVD Runge-Kutta
scheme RK(3,3) and five-stage forth order
RK(5,4) are the widely used methods given in
many references among them(Gao and Wang
2009). The RK(3,3) can be expressed in the
following form:

QW =qQ"+AtM TR(Q") (16.2)
Q@ =3/4Q(n) + 1/4[Q(1)+AtM —1 R(Q(1))] (16.b)
Q™'=1/3 Qn + 2/3[Q(2) + AtM—1 R(Q(2))]  (16.c)

This method is linearly stable for a Courant
number less than or equal to 1.

Numerical Results

All of the computations are performed on a
Compaqg laptop computer (2.33 GHz Intel (R)
Core (TM) 2 CPU T7600 with 4G Bytes memory)
using Ubuntu 14.05 Linux operating system. The
code was written in C Language and compiled
with the default gcc compiler. As a preliminary
test we apply the totally volume integral
discontinuous Galerkin method to several one-
dimensional examples involving linear advection
equations, inviscid Burger's equation and
Buckley-Leverett equations.

The global error is calculated as the difference
between the exact solutions and the numerical
solutions. The discretize Ly norm error is given as

L1 _ Zj l edof|Qex Qih|/td0f,

where N is the total number of elements, edof is
the element degree of freedom and
tdof=(N[_I_] edof)is the total degree of freedom.

Numerical Tests and Comparison.

Example-1
The first example is linear advection equation

considered in  many references among
them(Zhang et al., 2008).

0Q | 9F(Q) _

at ox =0, (l)
with F(Q) = Q. The initial condition is given as
Q(x,0) = sin*(r x) with periodical boundary
conditions. The exact solution is Q(xt) =

sin*(m(x — t)). The domain [-1,1] is divided into
N equally space elements. The approximated
solutions are constructed from polynomials of
orders k from 1 to 3. The RK (3,3) is used for k =
1 and 2, while RK (5,4) is used in case of k = 3,
where the RK methods are used for evaluating the
time integral part. The numerical results are
obtained at time t =1.0. Table (1) exhibits the L;
error and order of accuracy using TVI-DG
method. Whereas Table (2) reveals the L; error
and order of accuracy using weighted compact
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method of forth and sixth order of accuracy from
(Zhang et al., 2008). Figure(1) displays the
numerical solution at t = 1.0 using polynomial of
order k = 2. Figure 2 reveals L; error of TVI-DG
method with polynomials from 1 to 3 and the L1

error of the weighted compact method of orders 4
and 6 from (Zhang et al., 2008). Figure (2) and
Table (2) show that TVI-DG method has lower
error magnitude as compared with weighted
compact method.

Table (1) L, error and the order of accuracy for 1D linear advection eqn. with periodic boundary conditions at t = 1 by using

TVI-DG method with polynomials of orders k =1 to 3.

k=1 k=2 k=3
N L, error Order L, error order L, error order
10 2.90933e-01 - 6.005329e-02 - 3.991401e-03 -
20 9.40716e-02 1.628 4.146367e-03 3.856 1.021990e-04 5.287
40 2.811773e-02 1.742 2.284089e-04 4,182 5.570254e-06 4.197
80 4.257114e-03 2.723 2.093349e-05 3.447 3.388487e-07 4.039
160 5.529017e-04 2.944 2.419287e-06 3.113 2.12720e-08 3.993
Table (2) L, error and the order of accuracy for 1D linear t
advection eqn. from (Zhang et al., 2008) 09
nar {
Method N L, error L, order | | |
10 356e-1 : it
20 1421 1.33 s | ' -
WCOMP4 40  2.62e-2 2.44 s | '-
80 2.21e3 357 L) -'
160  1.64e-4 3.76 e
10 3.56e-1 - oar
20 9.27e-2 1.94 o o
WCOMP6 40  7.22¢-3 3.68 . 05 ==y = 05 =
X-C0onEnate
80 3.06e-4 4.56
160 1.10e-6 8.12

Figure (1). The numerical solution of 1D linear advection
eqgn. with initial condition Q=sin*(x x)

at t=1.0, N=200 elements by using polynomial of order k =
2
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Figure (2). L; errors for TVI-DG, with k=1 to 3 and
weighted compact method from (Zhang et al., 2008).

Example-2

The second example is the linear advection
equation, eqgn. (1) with F(Q) = Q. The initial
condition Q(0,x) = 0.0 and the boundary condition

given as Q(0,t) —sm( nt) The problem is

considered in many references among them Ref.
(Liu et al., 2010). The problem domain x €
[0,100] is divided into 200 elements. The
approximated solutions are constructed from
polynomials of order k from 2 to 4.Due to the
smooth solution; there is no need for using the
stabilization technique. The time part is evaluated
using RK(3,3) and RK(5,4). Figures 3 to 5 display
the numerical solutions at t = 20, 40 and 60,
respectively. The figures demonstrate that the
TVI-DG is a very efficient method for solving
problems with sine wave propagation from the
boundary to the main domain, without losses in
the wave amplitude in case of long time intervals.
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Figure (3). The numerical solution of example 2. by using
TVI-DG with k =2 to 4 at time t=20.
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Figure (4). The numerical solution of example 2. by using
TVI-DG with k =2 to 4 at time t=40.
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Figure (5). The numerical solution of example 2. by using
TVI-DG with k =2 to 4 at time t=60.

Example-3

The third test example is the inviscid Burger's
equation, considered in many references among
them(Wang et al., 2008).

22+ 289 = 0, with F(Q) =% Q2 @)

The initial condition is u(0, x) = sin(m x) with
periodical boundary conditions. The problem
domain [0,2] is divided into 150 equally spaced
elements. The approximated solutions are
constructed from polynomials of orders k from 2
to 4. The RK (5,4) are used for evaluating the
time integral part. The numerical results are
obtained at time t = 1. Due to discontinuity, the
modified streamline - upwind stabilization
technique is used to capture the unphysical
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oscillation in the flow problem. Figure (6). display
the numerical solutions using TVI-DG method at
t =1. The figure reveals that the TVI-DG method
is very efficient and there is no significant
unphysical flow in case of shock wave problems.

Example-4
The fourth example is Buckley-Leverett equation
for two phase flow(Xin and Flaherty 2006).

0Q , 0F(Q) _
6t+ ax

. Q?

The initial condition is given as Q(x,0) =
é i;g The problem domain [-1,2.5] is
divided into 200 equal elements. The
approximated solutions are constructed from
polynomials of orders K from 2 to 4. The RK
(5,4) are used for evaluating the time part. The
numerical solution is obtained at time t = 1.0.
Figure (7) demonstrates that the TVI-DG method
with modified streamline upwind stabilization
technique is very efficient and there is no
nonphysical oscillation of the numerical solution
for the shocked flow where the solution involves
one moving shock wave followed by expansion
wave(Xin and Flaherty 2006). However there is
no closed form of the equation (exact solution),
thus the exact solution can be obtained by using
1000 element.

o8

T =
i (]
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B |

- |
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Figure (6.) The numerical solution of example 3. by using
TVI-DG withk=2to 4 attimet=1.
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Figure (7). The numerical solution of example 4. by using
TVI-DG with k =2 to 4 at time t = 1.

Example-5

The fifth test example is the Buckley-Leverett
equation with the standard parameters, considered
in (Xin and Flaherty 2006). The standard

ot The

parameter of the flux is F(Q) = PSSy

initial condition is given as:

1, —-5<x<0
Q(xro)_o’ XZO

The problem domain [-1,1] is divided into 200
equal elements. The approximated solutions are
constructed from polynomials of orders k = 2 and
3. The RK (5,4) are used for evaluating the time
integral part. The numerical results are obtained at
timet=0.4.

Figure (8) displays the numerical solutions at time
t = 0.4, by using TVI-DG method with k =2 and 3
and the stabilization technique is used to capture
the unphysical oscillation in the flow. The
solution involves two moving shock waves each
followed by an expansion wave (Xin and Flaherty
2006).
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Figure (8). The numerical solution of example 5. by using
TVI-DG with k =2 and 3 at time t = 0.4.

DISCUSSION AND CONCLUSIONS

The transformation of the boundaries integrals
into the volume integrals is introduced in this
paper under the named TVI-DG method. Thus,
there is no need for using the integrals of test
functions at the boundaries as in the classical DG
method. The totally volume integral discontinuous
Galerkin method is used to solve hyperbolic
conservation laws. The numerical finding
presented that the TVI-DG scheme is very
efficient and had lower error magnitude than the
other high order schemes as weighted compact
scheme.
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