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Abstract 
The analytical solution of non homogeneous boundary value problem in the form: 
  𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)          𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 

                             𝐵𝐵1𝑦𝑦(𝑎𝑎) = 0   

                             𝐵𝐵2𝑦𝑦(𝑏𝑏) = 0 

are obtained by using Green's function method. A worked problem is considered for illustration. 

 الملخص العر�ي

" التي "non homogeneous boundary value problem ال�حث تم حل مسألة الق�م الحد�ة الغیر متجانسة في هذا
  :على الصورة

𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)          𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 

                                        𝐵𝐵1𝑦𝑦(𝑎𝑎) = 0   
                                        𝐵𝐵2𝑦𝑦(𝑏𝑏) = 0 

 .وقد تم توض�ح تطبیق طر�قة الحل على مسألة ."Greeen's function"�استخدام دالة جر�ن 

Keywords   Generalized function, Dirac 𝛿𝛿-function, Heaviside unit step function, Wronskian, 
differentiation under the integral sign.  
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1. Introduction 

Differential equations are the group of equations that contain derivatives. An ordinary 
differential equation (ODE) contains only ordinary derivatives and describes the 
relationship between these derivatives of the dependent variable, usually taken as y, 
with respect to the independent variable, usually taking as x. The solution to such an 
ordinary differential equation is therefore a function of x and is written y(x). For an 
ordinary differential equation to have a closed-form solution (Frank 1972; Michael 
1998), it must be possible to express y(x) in terms of the standard elementary functions. 
The solutions of some differential equations cannot, however, be written in closed 
form, but only as an infinite power series. Ordinary differential equations may be 
separated conveniently into different categories according to their general 
characteristics. The primary grouping adopted here is by the order of the equation. The 
order of an ordinary differential is simply the order of the highest derivative it contains. 
Ordinary differential equations may be classified further according to degree. The 
degree of an ordinary differential equation is the power to which the highest-order 
derivative is raised, after the equation has been rationalized to contain only integer 
powers of general function y(x) that satisfies the equation, it will contain constants of 
integration (equal to the order) which may be determined by the application of some 
suitable boundary conditions. When the boundary conditions have been applied, and 
the constants found, we are left with a particular solution to the ordinary differential 
equations, which obey the given boundary conditions. In our present paper we  
introduce Green's function (Donald 1992; Tyn 1973) which will be shown to represent 
the particular solutions in integral form of boundary value problem for ordinary 
differential equation. 

2. Standard Form 

The  linear ordinary differential equation of the second order has the general form, 

𝑎𝑎0𝑦𝑦 ′′ + 𝑎𝑎1𝑦𝑦 ′ + 𝑎𝑎2𝑦𝑦 = 𝐹𝐹(𝑥𝑥)             𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏                          (1) 

where 𝒂𝒂𝟎𝟎 ≠ 𝟎𝟎,  𝒂𝒂𝟏𝟏 and 𝒂𝒂𝟐𝟐 are continuous functions (coefficients) in the interval [𝒂𝒂,𝒃𝒃] 
and 𝑭𝑭(𝒙𝒙) is a piecewise continuous (source function). If 𝑭𝑭(𝒙𝒙) = 𝟎𝟎, the equation is 
called homogeneous, otherwise it is non homogeneous. 
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3. Self Adjoint Form 

A linear ODE of the second order (1) can be written in the form 
  𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑝𝑝 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�+ 𝑞𝑞𝑞𝑞 = 𝑓𝑓(𝑥𝑥)     in      𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏                    (2) 

i.e.                     𝑝𝑝 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑞𝑞𝑞𝑞 = 𝑓𝑓(𝑥𝑥) 

or more compactly as 
  𝐿𝐿𝐿𝐿 = 𝑓𝑓(𝑥𝑥);        𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 

where 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) are continuous functions and 𝑝𝑝(𝑥𝑥) is continuously differentiable 
and does not vanish in the interval [𝑎𝑎, 𝑏𝑏], 𝑓𝑓(𝑥𝑥) is a piecewise continuous function, and 
𝐿𝐿 ≡ 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑝𝑝 𝑑𝑑

𝑑𝑑𝑑𝑑
� + 𝑞𝑞 = self adjoint operator. 

NOTES 

3.1. Every linear second order differential equation (1) for which 𝑎𝑎0 ≠ 0 can be 
expressed (Donald 1992; Michael 1998) in self adjoint form (2). 

Proof: 

multiplying (1) by an integrating factor µ(𝑥𝑥) we get 

  µ𝑎𝑎0𝑦𝑦 ′′ + µ𝑎𝑎1𝑦𝑦 ′ + µ𝑎𝑎2𝑦𝑦 = µ𝐹𝐹(𝑥𝑥), 
the equation is in self adjoint form if 

  µ𝑎𝑎1 = (µ𝑎𝑎0)′ = 𝜇𝜇𝑎𝑎0′ + 𝜇𝜇′𝑎𝑎0 

solving, we get  

  𝜇𝜇 = 1
𝑎𝑎0
𝑒𝑒∫

𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑 

and   

  𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑒𝑒∫

𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑𝑦𝑦 ′�+ �𝑎𝑎2

𝑎𝑎0
𝑒𝑒∫

𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑� 𝑦𝑦 = 𝐹𝐹(𝑥𝑥)

𝑎𝑎0
𝑒𝑒∫

𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑 

when we set 

  𝑝𝑝(𝑥𝑥) = 𝑒𝑒∫
𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑 ,     𝑞𝑞(𝑥𝑥) = 𝑎𝑎2

𝑎𝑎0
𝑒𝑒∫

𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑   and   𝑓𝑓(𝑥𝑥) = 𝐹𝐹(𝑥𝑥)

𝑎𝑎0
𝑒𝑒∫

𝑎𝑎1
𝑎𝑎0
𝑑𝑑𝑑𝑑 
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3.2. When 𝑢𝑢(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) are continuously- differentiable functions on 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 with 
piecewise continuous second derivatives (Donald 1992; Michael 1998), it is 
straightforward to show that  

  𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝(𝑢𝑢𝑣𝑣 ′ − 𝑣𝑣𝑢𝑢′)�. 

This equation is known as Lagrange's identity, where L is the self adjoint operator. 

4. Linear Boundary Conditions 

Consider conditions of the form 

 
𝐵𝐵1𝑦𝑦 =∝1 𝑦𝑦(𝑎𝑎) + 𝛽𝛽1 𝑦𝑦′(𝑎𝑎) = 0
𝐵𝐵2𝑦𝑦 =∝2 𝑦𝑦(𝑏𝑏) + 𝛽𝛽2 𝑦𝑦′(𝑏𝑏) = 0

�                                         (3) 

where the constants  ∝1 and 𝛽𝛽1 as also ∝2 and 𝛽𝛽2, are not all zero.  
They are called unmixed homogeneous boundary conditions, because one condition is 
at 𝑥𝑥 = 𝑎𝑎 and the other is at 𝑥𝑥 = 𝑏𝑏 (a, b are two boundary points). 

5. Boundary-Value  Problems 

In general, the system consists of a second-order differential equation of the form (1) 
or (2) together with two linear, homogeneous boundary conditions (3), called the 
boundary-value problem 

  
𝑎𝑎0𝑦𝑦 ′′ + 𝑎𝑎1𝑦𝑦 ′ + 𝑎𝑎2𝑦𝑦 = 𝐹𝐹(𝑥𝑥)    𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 

𝐵𝐵1𝑦𝑦 =∝1 𝑦𝑦(𝑎𝑎) + 𝛽𝛽1 𝑦𝑦′(𝑎𝑎) = 0
𝐵𝐵2𝑦𝑦 =∝2 𝑦𝑦(𝑏𝑏) + 𝛽𝛽2 𝑦𝑦′(𝑏𝑏) = 0

�                            (4) 

or 

  
(𝑝𝑝𝑦𝑦 ′)′+ 𝑞𝑞𝑞𝑞 = 𝑓𝑓(𝑥𝑥)          𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏    

𝐵𝐵1𝑦𝑦 =∝1 𝑦𝑦(𝑎𝑎) + 𝛽𝛽1 𝑦𝑦′(𝑎𝑎) = 0
𝐵𝐵2𝑦𝑦 =∝2 𝑦𝑦(𝑏𝑏) + 𝛽𝛽2 𝑦𝑦′(𝑏𝑏) = 0

�                                 (5) 

6. Solutions Of Boundary- Value  Problems 

To solve the boundary-value problem (4), we must first find the general solution which 
is the sum of the complementary function 𝑦𝑦𝑐𝑐(𝑥𝑥) and the particular integral 𝑦𝑦𝑝𝑝(𝑥𝑥).  
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6.1. Finding The Complementary  Function 𝑦𝑦𝑐𝑐(𝑥𝑥)  

If 𝑎𝑎0,𝑎𝑎1 and 𝑎𝑎2 are constants, the standard method for finding 𝑦𝑦𝑐𝑐(𝑥𝑥) is to try a solution 
of the exponential form, it will contain two arbitrary constants. 

6.2. Finding The Particular Integral  𝑦𝑦𝑃𝑃(𝑥𝑥)  

There is no generally applicable method for finding the particular integral 𝑦𝑦𝑃𝑃(𝑥𝑥) but, 
for linear ODEs with constant coefficients and a simple forcing function F(x), 𝑦𝑦𝑃𝑃(𝑥𝑥)  
can often be found (Frank 1972; Michael 1998) by inspection, or by using the 
differential operators, or applying the method of undetermined coefficients [if 𝐹𝐹(𝑥𝑥) 
contains only polynomial, exponential, sinusoidal, cosinusoidal]. Two further methods 
that are useful in finding the particular integral 𝑦𝑦𝑃𝑃(𝑥𝑥) are those based on the variation 
of parameters, partially known complementary function (reduction of order). The 
general solution is given by 

  𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝑐𝑐(𝑥𝑥) + 𝑦𝑦𝑝𝑝(𝑥𝑥)                                    (6) 

and using the boundary conditions to evaluate the two arbitrary constants. 

7. Solutions Of Boundary-Value Problems Using Green's Function 

The solution of the boundary-value problem (5), is given (Donald 1992; Tyn 1973) in 
integral form by 

  𝑦𝑦(𝑥𝑥) = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉)𝑓𝑓(𝑏𝑏
𝑎𝑎 𝜉𝜉)𝑑𝑑𝑑𝑑                                           (7) 

where 𝜉𝜉 is the variable of integration, x is a parameter and 𝐺𝐺(𝑥𝑥, 𝜉𝜉) is the Green's 
function for the boundary value-problem (5),  is defined as the solution of 

  𝐿𝐿𝐿𝐿(𝑥𝑥, 𝜉𝜉) = 𝛿𝛿(𝑥𝑥 − 𝜉𝜉)            (7.1) 

i.e. 𝐿𝐿𝐿𝐿(𝑥𝑥, 𝜉𝜉) = 0  for all 𝑥𝑥 ≠ 𝜉𝜉 

  𝐵𝐵1𝐺𝐺 =∝1 𝐺𝐺(𝑎𝑎, 𝜉𝜉) + 𝛽𝛽1𝐺𝐺′(𝑎𝑎, 𝜉𝜉) = 0                     (7.2) 

  𝐵𝐵2𝐺𝐺 =∝2 𝐺𝐺(𝑏𝑏, 𝜉𝜉) + 𝛽𝛽2𝐺𝐺′(𝑏𝑏, 𝜉𝜉) = 0                    (7.3) 

𝐺𝐺(𝑥𝑥, 𝜉𝜉) is continuous for all x including 𝜉𝜉 

that is      𝐺𝐺(𝑥𝑥, 𝜉𝜉) �
𝑥𝑥 = 𝜉𝜉 +

𝑥𝑥 = 𝜉𝜉 −
= 0                       (continuity condition) 
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and 

𝐺𝐺′(𝑥𝑥, 𝜉𝜉) is continuous for all x except for a discontinuity at 𝑥𝑥 = 𝜉𝜉 of magnitude 1
𝑝𝑝(𝜉𝜉)

;  

that is     𝐺𝐺′(𝑥𝑥, 𝜉𝜉) �
𝑥𝑥 = 𝜉𝜉 +

𝑥𝑥 = 𝜉𝜉 −
= 1

𝑝𝑝(𝜉𝜉)
         (jump discontinuity condition) 

where 𝛿𝛿(𝑥𝑥 − 𝜉𝜉) is the Dirac delta function (Donald 1992; Glyn 2004; Koshlyakov et 
al. 1964; Michael 1998; Tyn 1973). 

8. Construction Of Green's Function (Formulas For Green's Functions) 

The associated homogeneous boundary-value problem of (5) is 

  
𝐿𝐿𝐿𝐿 = �𝑝𝑝𝑦𝑦 ′�′ + 𝑞𝑞𝑞𝑞 = 0,       𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

𝐵𝐵1𝑦𝑦 =∝1 𝑦𝑦(𝑎𝑎) + 𝛽𝛽1𝑦𝑦 ′(𝑎𝑎) = 0
𝐵𝐵2𝑦𝑦 =∝2 𝑦𝑦(𝑏𝑏) + 𝛽𝛽2𝑦𝑦 ′(𝑏𝑏) = 0

�       (8) 

THEOREM  

If the associated homogeneous boundary value problem (8) has the trivial solution only 
(Donald 1992; Tyn 1973), then Green's function exists and is unique. 
We summarize these results. The Green's function is given by 

  𝐺𝐺(𝑥𝑥, 𝜉𝜉) = 1
𝑝𝑝𝑝𝑝

{𝑦𝑦1(𝑥𝑥)𝑦𝑦2(𝜉𝜉)𝐻𝐻(𝜉𝜉 − 𝑥𝑥) + 𝑦𝑦1(𝜉𝜉)𝑦𝑦2(𝑥𝑥)𝐻𝐻(𝑥𝑥 − 𝜉𝜉)} 

  =

⎩
⎨

⎧
1
𝑝𝑝𝑝𝑝

𝑦𝑦1(𝑥𝑥)𝑦𝑦2(𝜉𝜉)          𝑓𝑓𝑓𝑓𝑓𝑓  𝑥𝑥 < 𝜉𝜉

1
𝑝𝑝𝑝𝑝

𝑦𝑦1(𝜉𝜉)𝑦𝑦2(𝑥𝑥)          𝑓𝑓𝑓𝑓𝑓𝑓  𝑥𝑥 > 𝜉𝜉
          (9) 

where 𝑦𝑦1(𝑥𝑥) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦2(𝑥𝑥) are linearly independent solution of 𝐿𝐿𝐿𝐿 = 0,     𝑊𝑊 is the 
Wronskian determinant of 𝑦𝑦1(𝑥𝑥), 𝑦𝑦2(𝑥𝑥) given by 

  𝑊𝑊 = 𝑦𝑦1(𝑥𝑥)𝑦𝑦2′ (𝑥𝑥)− 𝑦𝑦2(𝑥𝑥)𝑦𝑦1′ (𝑥𝑥) 

and 𝐻𝐻(𝑥𝑥 − 𝜉𝜉),𝐻𝐻(𝜉𝜉 − 𝑥𝑥) are the Heaviside unit step function (Glyn 2004; Koshlyakov 
et al. 1964; Michael 1998; Riley et al. 2003; Tyn 1973). 
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NOTES 

8.1.  𝑝𝑝𝑝𝑝 is a constant differing from zero 

Proof:   

Since 𝑦𝑦1(𝑥𝑥)𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦2(𝑥𝑥) are solutions of the associated homogeneous equation, we have 

  𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝𝑦𝑦1′ � + 𝑞𝑞𝑦𝑦1 = 0,   𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑝𝑝𝑦𝑦2′ � + 𝑞𝑞𝑦𝑦2 = 0 

multiplying the first equation by 𝑦𝑦2, the second equation by 𝑦𝑦1 and subtracting, we 
obtain 
  𝑦𝑦1

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝𝑦𝑦2′ � − 𝑦𝑦2

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝𝑦𝑦1′ � = 0, 

which can be written in the form 

  𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑝𝑝(𝑦𝑦1𝑦𝑦2′ − 𝑦𝑦2𝑦𝑦1′ )� = 0, 

integration yields 

  𝑝𝑝(𝑦𝑦1𝑦𝑦2′ − 𝑦𝑦2𝑦𝑦1′ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑥𝑥). 

8.2. Problems with non homogeneous boundary conditions (Donald 1992; Tyn 1973).  

There are two ways to solve this problem, one is to use superposition, and the other is 
to use Lagrange's identity. Both methods use Green's function for the associated 
problem with homogeneous boundary conditions. 

8.3. Modified (generalized) Green's functions. 

When homogeneous problem has nontrivial solution, Green's function does not exist. 
We define a modified Green's function (Donald 1992; Tyn 1973). Two situations arise, 
depending on whether the boundary value problem has one or two linearly independent 
solutions. 

9. Illustrated Example 

Solve the boundary-value problem 
  𝑦𝑦 ′′ + 4𝑦𝑦 = 𝑓𝑓(𝑥𝑥),                     0 < 𝑥𝑥 < 3 

  𝑦𝑦(0) = 0 

  𝑦𝑦 ′(3) = 0 
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when   (i)     𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 

            (ii)   𝑓𝑓(𝑥𝑥) = 𝐻𝐻(𝑥𝑥 − 1) −𝐻𝐻(𝑥𝑥 − 2) 

            (iii)   𝑓𝑓(𝑥𝑥) = 𝛿𝛿(𝑥𝑥 − 1) 

SOLUTION 

The associated homogeneous system has only the trivial solution, the Green's function 
for this problem can be obtained from (9).  
 
Solutions of 

  𝑦𝑦 ′′ + 4𝑦𝑦 = 0   𝑖𝑖. 𝑒𝑒.  𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑦𝑦 ′�+ 4𝑦𝑦 = 0 

are always of the form 

  𝑦𝑦(𝑥𝑥) = 𝐶𝐶1𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 + 𝐶𝐶2𝑐𝑐𝑐𝑐𝑐𝑐2𝑥𝑥, 

where 𝐶𝐶1  𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶2 are arbitrary constants, solutions that satisfy  𝑦𝑦(0) = 0, 𝑦𝑦 ′(3) = 0 
respectively,  are 𝑦𝑦1(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥  𝑎𝑎𝑎𝑎𝑎𝑎   𝑦𝑦2(𝑥𝑥) = cos (6− 2𝑥𝑥), with 𝑝𝑝 = 1, 𝑊𝑊 =
𝑦𝑦1𝑦𝑦2′ − 𝑦𝑦2𝑦𝑦1′ = −2𝑐𝑐𝑐𝑐𝑐𝑐6,  we get  

      𝐺𝐺(𝑥𝑥, 𝜉𝜉) = 1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

[𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. cos(6 − 2𝜉𝜉)𝐻𝐻(𝜉𝜉 − 𝑥𝑥) + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜉𝜉. cos(6 − 2𝑥𝑥)𝐻𝐻(𝑥𝑥 − 𝜉𝜉)] 

with source function 𝑓𝑓(𝑥𝑥), the solution of the boundary value problem is (7) 

𝑦𝑦(𝑥𝑥) = � 𝐺𝐺(𝑥𝑥, 𝜉𝜉)𝑓𝑓(𝜉𝜉)𝑑𝑑𝑑𝑑
3

0
 

1st case:   𝑓𝑓(𝑥𝑥) = 2𝑥𝑥, the solution is  

  𝑦𝑦(𝑥𝑥) = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉). 2𝜉𝜉𝜉𝜉𝜉𝜉 = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉). 2𝜉𝜉𝜉𝜉𝜉𝜉 + ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉). 2𝜉𝜉𝜉𝜉𝜉𝜉3
𝑥𝑥

𝑥𝑥
0

3
0  

                                                                                      

= �
1

−2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑥𝑥

0
𝑠𝑠𝑠𝑠𝑠𝑠2𝜉𝜉. cos(6 − 2𝑥𝑥). 2𝜉𝜉 𝑑𝑑𝑑𝑑 + �

1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

3

𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. cos(6 − 2𝜉𝜉). 2𝜉𝜉 𝑑𝑑𝑑𝑑 

i.e.    𝑦𝑦(𝑥𝑥) = 𝑥𝑥
2
− 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥

4𝑐𝑐𝑐𝑐𝑐𝑐6
                                      (10) 
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NOTES 

9.1. This solution could also be derived simply by finding the general solution of        
𝑦𝑦 ′′ + 4𝑦𝑦 = 2𝑥𝑥 and using boundary conditions to evaluate two arbitrary constants, or by 
using Laplace transform method. 

2nd case:  𝑓𝑓(𝑥𝑥) = 𝐻𝐻(𝑥𝑥 − 1) −𝐻𝐻(𝑥𝑥 − 2), the solution is 

  𝑦𝑦(𝑥𝑥) = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉)[𝐻𝐻(𝜉𝜉 − 1) −𝐻𝐻(𝜉𝜉 − 2)]𝑑𝑑𝑑𝑑3
0  

            = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉)𝑑𝑑𝑑𝑑,                         1 < 𝜉𝜉 < 22
1  

when 𝑥𝑥 ≤ 1 

  𝑦𝑦(𝑥𝑥) = ∫ 1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. cos(6 − 2𝜉𝜉)𝑑𝑑𝑑𝑑2
1  

then 

 𝑦𝑦(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥
4𝑐𝑐𝑐𝑐𝑐𝑐6

(𝑠𝑠𝑠𝑠𝑠𝑠2 − 𝑠𝑠𝑠𝑠𝑠𝑠4)                                (11)           

when 1 < 𝑥𝑥 < 2 

  𝑦𝑦(𝑥𝑥) = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉)𝑑𝑑𝑑𝑑 + ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉)𝑑𝑑𝑑𝑑2
𝑥𝑥

𝑥𝑥
1  

 

 = ∫ 1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑠𝑠𝑠𝑠𝑠𝑠2𝜉𝜉. cos(6 − 2𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ 1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. cos(6 − 2𝜉𝜉)𝑑𝑑𝑑𝑑2
𝑥𝑥

𝑥𝑥
1  

 

i.e                      𝑦𝑦(𝑥𝑥) = 1
4

+ 1
4𝑐𝑐𝑐𝑐𝑐𝑐6

[𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. 𝑠𝑠𝑠𝑠𝑠𝑠2− cos(6 − 2𝑥𝑥) 𝑐𝑐𝑐𝑐𝑐𝑐2]          (12) 

and when 2 ≤ 𝑥𝑥 < 3 

  𝑦𝑦(𝑥𝑥) = ∫ 1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑠𝑠𝑠𝑠𝑠𝑠2𝜉𝜉. cos(6 − 2𝑥𝑥)𝑑𝑑𝑑𝑑2
1  

then 

  𝑦𝑦(𝑥𝑥) = cos(6−2𝑥𝑥)
4𝑐𝑐𝑐𝑐𝑐𝑐6

(𝑐𝑐𝑐𝑐𝑐𝑐4 − 𝑐𝑐𝑐𝑐𝑐𝑐2)         (13)                                    

9.2. The solutions (11), (12), (13) are not so easily produced using methods from 
elementary differential equations. They require integration of the differential equation 
on three separate intervals (0,1), (1,2) and (2,3) then matching of the solution and its 
first derivative at 𝑥𝑥 = 1 and 𝑥𝑥 = 2, or by using Laplace transform method. 
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3rd case:  𝑓𝑓(𝑥𝑥) = 𝛿𝛿(𝑥𝑥 − 1), the solution is 

  𝑦𝑦(𝑥𝑥) = ∫ 𝐺𝐺(𝑥𝑥, 𝜉𝜉)𝛿𝛿(𝜉𝜉 − 1)𝑑𝑑𝑑𝑑3
0  

i.e.     𝑦𝑦(𝑥𝑥) = 1
−2𝑐𝑐𝑐𝑐𝑐𝑐6

{𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. 𝑐𝑐𝑐𝑐𝑐𝑐4.𝐻𝐻(1 − 𝑥𝑥) + 𝑠𝑠𝑠𝑠𝑠𝑠2. cos(6 − 2𝑥𝑥) .𝐻𝐻(𝑥𝑥 − 1)}  (14) 

  = �

−1
2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥. 𝑐𝑐𝑐𝑐𝑐𝑐4                   𝑥𝑥 < 1

−1
2𝑐𝑐𝑐𝑐𝑐𝑐6

𝑠𝑠𝑠𝑠𝑠𝑠2. cos (6− 2𝑥𝑥)       𝑥𝑥 > 1
 

 

9.3. This solution (14) could also be derived very simply by applying Laplace and 
inverse Laplace transform. 
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