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Abstract: Numerical integration is a powerful way to integrate certain categories

ARTICLE HISTORY of integrals, such as those whose closed-form anti-derivative is missing, improper

FragsfiEt integrals, and tabular data where a function is absent. In this paper, open and
26 April 2023 closed dual hybrid quadrature rules have been designed for the numerical

integration of real definite integrals with either a singular integrand or a non-
Accepted: elementary anti-derivative, respectively. Such quadrature rules couple a Gauss-
28 June 2023 type rule with a Newton-Cotes-type rule such that both rules are of the same

degree of precision, say p to achieve a hybrid rule of a degree of precision greater
Keywords: than or equal to p+2. The open/closed-type hybrid quadrature rule has been
Gaussian Quadrature, constructed as a linear combination between the two-point Gauss-Legendre
Bool’s Rule, Kronrod guadrature enhanced by Kronrod extension and a derivative-based open/closed
Extension, Richardson Newton—Cotes formula yielding a hybrid rule of degree of precision equal to nine.
Extrapolation, Hybrid Furthermore, a hybrid quadrature rule was created by merging the numerically

Quadrature Rule,

e enhanced Lobatto-Gauss rule and Bool's rule which was enhanced by Richardson
Derivative-Based Open &

extrapolation. An error analysis analytically confirms that the proposed rules
Closed Newton-Cotes L . ! .
Quadrature Formulae perform better than their ingredients' quadrature rules. The effectiveness of the
Mixed Quadrature Rule suggested hybrid rules has been demonstrated with some integral examples that
Numerical Quadrature. exhibit good agreement with the precise outcomes. An adaptive algorithm has
been implemented to enhance the accuracy of the results obtained.
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technique to integrate specific categories of
integrals with some restrictions, such as
integrals that do not possess a closed form,
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INTRODUCTION
Numerical integration is a widespread
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elementary anti-derivatives, or improper
integrals. One of the very popular tools for
numerical integration is the quadrature rules,
either Gauss-type or Newton-Cotes-type
(Atkinson, 2012; Davis and Rabinowitz,
2012; Burden and Faires, 2005). Quadrature
rules are commonly implemented in a variety
of applications in physics, engineering, and
quantum mechanics. Such quadrature rules
are very convenient for computing the anti-
derivative of tabular data, which may be
encountered in some applications from
experiments or measurements where the
function is absent. Gauss-type and Newton-
Cotes-type quadrature rules are both open,
closed, and semi-open types; this should
increase their reliability in adopting a variety
of integrals with certain constraints.
Numerical integration can efficiently integrate
improper integrals of different types.
Improper integrals over the infinite intervals
(0,0) or (—o,0) can be efficiently
integrated by Gauss-Lagurre or Gauss-
Hermite, respectively (Das and Dash, 2017).
Furthermore, such improper integrals can be
transformed by a suitable transformation
yielding finite limits of integration, then recall
a convenient rule for the finite intervals.
Gaussian quadrature rules are widely used for
integral oscillatory or singular integrands that
are encountered in many applications, as
evidenced by (Milovanovic, 1998). A
comparison between Newton-Cotes
quadrature rules and Gaussian quadrature
rules is presented in (Sermutlu, 2005) in terms
of accuracy, computational effort, and number
of integrand evaluations. He claimed that by
using low and high-order rules, the quadrature
rules of Gauss-Type are superior to the
standard Newton-Cotes-Type rules.

The degree of precision of quadrature rules
can be improved either by increasing the
number of nodes n or decreasing the step size
h. However, this may adversely affect the
stability of the numerical rule due to the
undesirable appearance of negative weights
which leads to an ill-conditioned numerical
process. Thus, one could resort to the adaptive

scheme either globally (on the whole interval
of integration) if needed or locally along some
sub-regions where the integrand has sharp
variation. The mechanism of the adaptive
technique is to densely evaluate the integrand
in certain sub-intervals where the function
experiences large variation to capture the
behavior of the integrand in such regions until
the termination criterion is met (Dash and
Das, 2013a; Dash and Das, 2013b; Dash and
Das, 2012). A new set of closed, Mid-point,
and open Newton-Cotes quadrature rules were
proposed by Burg et. al. (Burg, 2012; Burg,
2013; Zafar, 2014). Such new derivative-
based Newton-Cotes formulae require the
evaluations of the integrand and its derivative
at less abscissa compared to the classical
Newton-Cotes rules. They claim that the new
scheme of Newton-Cotes formulae yields
much better performance compared with the
standard Newton-Cotes formulae in terms of
accuracy, computational effort, arithmetic
operations of the integrand, degree of
precision, error terms, and their coefficients.

The degree of precision of n-point the
Gaussian rule is (2n — 1), that is this rule
should exactly integrate any polynomials of a
degree less than or equal to (2n — 1). The n-
point Newton-Cotes quadrature rules are of
the degree of precision (n — 1) if n is even,
and of the degree of precision n if n is odd.
Recently, a numerical enhancement was
proposed by (Babolian et al., 2005; Masjed et.
al., 2005) to increase the accuracy by two for
the Gauss-Legendre and Gauss-Radau
quadrature rules. Furthermore, a numerical
enhancement of the Gauss-Lobatto quadrature
rule was proposed by (Eslahchi et. al., 2005),
and they claim that they obtained better
approximate results than those obtained by
the corresponding standard Gauss-Lobatto
quadrature rule. Moreover, such a technique
has been adopted for the open, closed, and
semi-open Newton-Cotes formulae,
respectively (Dehghan et. al., 2006; Dehghan
et. al., 2005a; Dehghan et. al., 2005b).
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It is worth emphasizing that those Gaussian
quadrature rules are stable because all the
weights are positive.  Gauss-Legendre,
Hermite, and Lagurre quadrature rules are of
open type, whereas Gauss-Lobatto and
right/left Gauss-Radaua are respectively of
closed and semi-open/closed type. A
drawback of Gauss-type rules is that they are
not progressive, that is, Gaussian rules of
differentiation, and have no nodes in common
except at the midpoint. To overcome the non-
progressive issue related to Gaussian
quadrature rules, Kronrod (Kronrod, 1965 a;
Kronrod, 1965 b; Walter, 1988) established
his extension to the Gauss-Legendre and
Lobatto quadrature rules, both of which have
a weight function (w(x) = 1). The Kronrod
extension optimally adds (n + 1) abscissas to
the n-point Gaussian, vyielding a more
accurate (2n + 1)-point Kronrod-Legendre
Gauss pair quadrature rule. In contrast, for
other Gaussian quadrature rules, such as
Hermite-Gauss and Lagurre-Gauss, there is
no real Kronrod extension (Kahaner, 1978),
but sub-optimal Kronrod extensions can be
gained with a degree of precision less than
(3n+ 1) (Begumisa and Robinson, 1991).
Additionally, Patterson (Patterson, 1968 a;
Patterson, 1968 b) enlarged the idea of
Kronrod extension by adding (2n + 2) points
to the (2n + 1)-point Kronrod—-Gauss pair to
achieve a progressive rule of (én+4) as a
degree of precision.

The accuracy of the numerical quadrature
rules can be enhanced by adopting some
reliable approaches such as Richardson’s
extrapolation (Burden and Faires 2005) and
the Kronrod extension which respectively rely
on the trapezoidal rule and quadrature rule as
a fundamental rule. Richardson extrapolation
(Zlatev et. al., 2018) is a powerful technique
to enhance the accuracy of approximation
numerical tools that deal with a parameter say
the step size h such as numerical integration,
numerical differentiation, numerical methods
for solving ordinary and partial differential
equations such as Runge-Kutta and finite

difference  methods  respectively.  The
advantage of implementing the Richardson
extrapolation to quadrature rule is to gain a
higher accuracy relying on low-order rules
and can be efficiently incorporated into
Gauss-Type (Mohanty, 2020; Jena and Dash,
2011) and Newton-Cotes-Type quadrature
rules (Jena and Dash, 2011).

Furthermore, a simple approach was first
proposed by (Das and Pradhan, 1996)
combining a pair of quadrature rules of the
same degree of precision, say p, producing a
mixed quadrature rule of better accuracy,
usually (p + 2). They combine the 3-point
Gauss-Legendre ~ with ~ Simpson’s  1/3
quadrature rule. It is worth emphasizing that,
the formula of the mixed quadrature rule does
not involve any extra sampling of the
integrand, it only linearly couples the
ingredient rules to gain better accuracy. Other
formulations of mixed rules are found
blending different Gauss-type with Newton-
Cotes-Type quadrature rules for approximate
evaluation of real definite integral and also for
analytic functions (Tripathy et. al., 2015;
Patra et. al., 2018; Mohanty, 2020). Such
mixed quadrature rules have been
implemented to solve singular integral
equations in electromagnetic field problems
(Jena and Nayak, 2015).

In this paper, three dual hybrid quadrature
rules have been constructed for the numerical
integration of real definite integrals with
singular integrands or non-elementary anti-
derivatives. Such quadrature hybridizes
between a Newton-Cotes-type formula and a
Gauss-type formula enhanced either by
Kronrod extension or Richardson
extrapolation, both of which have the same
degree of precision. This paper is structured
as follows: The relevant literature review is
presented in Section 1. In Section 2, we
introduce some basic definitions. In Section 3,
the Kronrod extension of the two-point
Gauss-Legendre quadrature rule has been
constructed. The open and closed type hybrid
rule coupling the Gauss-Kronrod quadrature
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rule with a derivative-based open and closed
type Newton-Cotes rule, respectively, has
been formulated in sections 3 and 4. The
further  closed-type hybrid rule was
formulated in Section 5 by combining a
numerically enhanced Gauss-Lobatto
quadrature rule with Bool’s Rule enhanced by
Richardson extrapolation. For the sake of
verification of the proposed hybrid rules of
both types, some numerical results are shown
in Section 6, followed by a discussion in
Section 7. Finally, a conclusion is drawn in
Section 8.

Basic Definitions
Here we introduce some basic definitions that
we need throughout the paper.

Definition 1 [1]: An n-point Gaussian-
quadrature rule is deflned by the formula,

n = [ = Z WG +EL(, (1)

where the points x; are the quadrature points
and are known as nodes or abscissas, the
factors w; are the corresponding weights, and
EL,(f) is the error of the rule (1). The
quadrature rule (1) is based on polynomial
interpolation. The mechanism of the Gauss
quadrature is based on the precision concept,
that is, the quadrature rule is exact for
polynomials of degrees less than or equal to
2n—1. That is the formula (1) exactly
integratesn  monomial  functions x%,i =
0,1,2,..,n. Thus we obtain a non-linear
system of moment equations that can be
solved, vyielding the nodes and the
corresponding weights.

Definition 2 (Degree of Precision): The
degree of precision of the n-point Gaussian-
quadrature rule (1) is defined by the degree
of the polynomial such that the error
El,(P,) = 0. Thus the quadrature rule (1) is
exact for all polynomials of degree <n, and
the error EL,(B,) # 0fori=n+1,n+ 2, ...
It is worth emphasizing that for the Newton-
Cotes quadrature rules, the equal-distance
nodes are known and the weights are

unknowns and need to be determined by
solving a Vandermonde system, whereas for
the Gaussian quadrature rules, the nodes and
the weights are both unknowns.

The two-point Gauss-Legendre quadrature
rule is given as,

h h
aa ) =h|f (1-7)+ 1+ )] @
where h = bz;a and throughout the paper

yzazﬁdenotes the mid-point of the
reintegration interval.

b
Igxace(f) = j f(x)dx = Igo(f) + Egr2(f), (3)

Where E;;,(f) is the truncation error of the
two-point Gauss-Legendre quadrature. The
error can be derived by polynomials
interpolation or by Taylor expansion of the
functions involved in I;;,(f) about the mid-
point u of the integration interval to yield,

EGLZ (f) - IExact(f) IGLZ (f)

1016h7
= —f @ w +

©) N
135 675 x 7] U+

The degree of precision of the two-point
Gauss-Legendre quadrature rule I ,(f) is
three, that is, it should exactly integrate
polynomials of degree up to three.

Definition 3 (Stability of Quadrature
Rule): If all weights in the formula (1) are
non-negative, then the rule is stable and

3= Z|wl| =b-

where A is known as the absolute condition
number of the quadrature rule.

Definition 4 (Progressive Quadrature
Rule): A quadrature rule is called progressive
if the nodes for I, are also nodes for the
successive rule I,,, where n, > n,.

The quadrature rule has this outstanding
feature that significantly reduces the
computational  effort  for  successive
quadrature rules by keeping the arithmetic
operations that are involved in integrating the
integrands to a minimum. Unfortunately,

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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Gauss-Type rules are not progressive; that is
Gaussian rules of different n have no nodes in
common except at the midpoint. To overcome
this issue, Kronrod 1965 established his
progressive extension to the Gauss-Legendre
quadrature as shown next.

Kronrod Extension of Two-Point Gauss-
Legendre Quadrature Rule

The Kronrod extension (Walter, 1988)
optimally adds (n+ 1) abscissas to the n-
point Gaussian rule yielding an (2n+ 1)-
point  Kronrod-Legendre  Gauss  pair
quadrature rule of (3n+ 1) or (3n+ 2) as
degree of precision depending on whether n is
even or odd respectively. The (2n + 1)-point
Kronrod-Legendre-Gauss pair quadrature
L1 (f) Is progressive as it only requires
sampling of the integrand at the new (n +
1) points.

Now we show how to enhance the degree of
precision of I;,(f) seeking its Kronrod
extension. Such extension can be achieved by
adding three new abscissa to the I;;,(f) in
equation (2); that is, we have,

5
Ixcr2(f) = Z cif (x:),
i=1

where, x, =u—%, and x, =,u+%.

To force this quadrature rule to exactly
integrate polynomials of degree 3n+ 1=
7,where n =2, we need to consider the
monomial functions flx)=x/,j=
0,1,2,....3n+ 1. Thus we have an algebraic
non-linear system with eight unknowns
C1,Cy,C3,Cyq, Cs, X1, X3, X5, and eight-moment
equations, which can be solved to obtain the
Kronrod extension of the Gauss-Legendre
quadrature rule Ixs.2(f) as,

IKGLZ(f)
( 6 6 )
L los|f| u— Sh|+f{u+ |Zh +308f(w) |
=ﬁi j ®
1 1

This formula can be written as,

Iexact (f) = Ixcr2(f) + Exer2(f) . (5)

where Ex¢r2(f) is the truncation error of the
Kronrod-Gauss quadrature rule and can be
computed by Taylor expansions of the
functions involved in I, (f) to yield,

8’ f@ (W) se7ant fU0 )

Eraz() =~ or ~ e 1n

Thus, the Kronrod extension of the two-point
Gauss-Legendre rule considerably enhanced
the degree of precision from three to seven,
and the local truncation error is of the ninth
order. It is worth mentioning that the Gauss-
Legendre quadrature rule is of open type
because all of its nodes are interior points and
usually cluster near the endpoints of the
integration interval. Efficient computation of
improper integrals with singular integrands
can be achieved by this rule, either alone or in
conjunction with other open-type Newton-
Cotes quadrature formulas, as demonstrated
later. As we have just shown, the Gauss-type
quadrature rules can be enhanced by their
Kronrod extension, whereas the adaptive
quadrature rule can be utilized to enhance the
approximate results obtained by the Newton-
Cotes-type quadrature rules. Next, we briefly
give an overview of the adaptive quadrature
rule.

Adaptive Algorithm

A mathematical integration technique called
adaptive quadrature (Stoer and Bulirsch,
1992; Burden and Faires, 2005) is utilized to
approximate the definite integral. Dynamic
adjustments are made to the subintervals and
the number of evaluation points by adaptive
quadrature based on the local behavior of the
integrand. This aids in obtaining a more
precise approximation, especially in situations
where functions change rapidly. The adaptive
quadrature algorithm usually consists of the
following steps:

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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Initial setup: Break up the integration
interval into multiple subintervals and
approximate the integral for each subinterval.

Error Estimation:

e Compare the results obtained with the
quadrature rule to estimate the error in
each subinterval.

e Determine which subintervals have a
significant impact on the error.

Refinement:

e Reduce the error by dividing the most
significant subintervals into smaller
subintervals.

o Perform the integration process again for
the subintervals that have been refined.

Termination: Keep repeating the process of
error estimation, adaptability, and refinement
till a specific level of accuracy is reached or
until a termination criterion is satisfied.

Formulation of the Open-Type Hybrid rule
coupling the Gauss-Kronrod rule with a
Derivative-Based Open-Type Newton-
Cotes rule.

Here, we show how to couple two quadrature
rules that both have the same degree of
precision, say seven, to yield a hybrid rule of
the same degree of precision, nine. The
ingredients of the open-type hybrid rule are
the Kronrod extension of the two-point
Gauss-Legendre rule and a derivative-based
open-type Newton-Cotes rule for n=3 which
is given by Zafar (Zafar 2014),

IExact(f)
1805[f (x1) + f(x2)] — 1245[f (x) + £ (x3)]

h 6605 ,
=504 +h T[f (x3) = f'(x0)] +
1315[f’(x2) - f’(x1)]
4 5951 h° f(g)(ll) b
1016064 ’

where the quadrature points are,
x;=a+ (i+1)h, i=012,..n,

and the step size is defined as:

h_(b—a)
T \n+2/

This formula can be rewritten as,

Iexact (f) = Inpo(f) + Enpo(f),  (6)
where,

INDO(f)
L 1805[f (x1) + f(xz)] — 1245[f (x0) + f(x3)]
T 224)+h

5
R 1) — £/l + 13151 () — /()

and,

5951 h°

et ¢:)] 11
Toteoes’ G+ O,

Enpo(f) =
It should be noted that the new derivative-
based Newton-Cotes formula Iypo has a
degree of precision of seven, the local
truncation error is of ninth order, and it only
needs four interior quadrature points. Thus,
Iypo requires the evaluations of the integrand
and its first derivative at a lower number of
abscissas compared to the classical Newton-
Cotes rules.

Now, multiplying equations (5) and (6),

respectively, by 29;55 and then adding the

resulting equations yields the open-type
hybrid quadrature rule as follows:

70 29755

8
oAt g e ) + g5 lwo D], ®

IOHR(f) =
where Ixq2(f) and Iypo (f) are respectively,
given by equations (6) and (7). The local
truncation error of E,yr(f) is of ninth order,
that is,

EOHR(f) = O(hll)- 9

We already know that the Gauss-Legendre
quadrature rule is of open type because all of
its nodes are interior points of the integration
interval. Combining this rule with a closed-
type Newton-Cotes rule can enable the
computation of integrals without a closed-
form anti-derivative or a non-elementary anti-
derivative, as demonstrated below.

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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Formulation of a Closed-Type Hybrid Rule
Coupling the Gauss-Kronrod Rule with a
Derivative-Based Closed-Type Newton-
Cotes Rule.

Furthermore, we can formulate a closed-type
quadrature rule with a degree of precision of
seven. Let us recall a derivative-based closed-
type Newton-Cotes rule for n =3 (Burg
2012) given as

IExact(f) - f f(X)
b { 93[f(a) + f(D)] + 243[f (x,) + f(x2)]

T 224 +2[570f'(@) — £/ ()] + 81[f ' (x2) — £ ()]
9 hF® (k)
313600 (10)

where the quadrature points x; = a + ih, i =
0,1,2,..n, and the step size is h = b%a, with

degree of precision seven. The formula (10)
can be rewritten as,

Igxact(f) = Inpc(f) + Enpc(f), (11)

where the error is given as:

9R°fO W)

11
313 x 600 THOGRT).

Enpc(f) =
In a similar fashion to the formulation in
Section 3, one can easily obtain the following
linear combination of equation (6) with
equation (11) yielding a closed-type hybrid
quadrature rule as,

15337 [3402

Ienr (f) = 1670111313 Ixgr2(f) +

INDC (f)]

where Ix¢2(f) and Iypc(f) are respectively
given by equations (6) and (10). The
corresponding truncation error of Iz (f) is,

ECHR(f) = O(hll)- (12)

Next, we formulate a closed-type hybrid rule
by blending two closed quadrature rules.

Formulation of The Closed -Type Hybrid
Rule Coupling the Numerically Enhanced
Gauss-Lobatto Quadrature Rule with

Bool’s Rule Enhanced by Richardson
Extrapolation.
First, let us start with the Gauss-Lobatto
quadrature rule.

1. Numerically Enhanced Gauss-Lobatto
Quadrature Rule

The standard n-point  Gauss-Lobatto
quadrature rule is given by the following
formula,

b
f FQ) dx = Loy (f)

n-1

= . f (@) + Z Cf G+ enf (B, (13)

where the absussas x; are the (i — 1)th zero
of the P,_,(x), and P,(x) is the n‘" degree
Legendre polynomial. This rule is closed
because both of the endpoints a,b are also
taken as quadrature points, and the degree of
precision of this rule is (2n — 3).

A numerical enhancement of the Gauss-
Lobatto quadrature rule (13) was proposed
by (Eslahchi et. al. 2005), they claim that their
approach vyields better approximate results
than those obtained by the corresponding
standard Gauss-Lobatto quadrature rule. The
core idea of their approach is to consider the
end-points of the integral as parameters and
that the monomial basis functions x' is
extended from i =0,1,2,...,2n+ 1 (for the
standard Gauss-Lobatto) to i =
0,1,2,...,2n + 3. Thus the proposed approach
is approximately exact for polynomials of
degree up to 2n + 3. That is, they proposed
the following system,

b ] bi+1 l+1
f xldx=l_l_—1 Zwkxk+aa + BB,
a

for i=0,12,..,2n+3, and the notations
a,b,a,B,x,Xg, ., Xn, W1, Wy, ...,w, are all
unknowns, resulting in a non-linear system
that has no analytic solution, but a numerical
solution can be found. Thus, all the abscissas,
the optimal location of endpoints, and the
corresponding weights only have numerical
values that are tabulated in (Eslahchi et. al

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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2005). Thus, one needs to rescale the original
integral to fit the new optimal endpoints by
the following transformation (Eslahchi et al.,
2005),

T b
| reodx = [ oo,

) a

where,
_(T—§6 (t—086)x+bs—ar
lp(x)_(b—a)f< b—a >

A numerically enhanced Gauss-Lobatto
quadrature rule for n = 1 takes the numerical

form within a tolerance 10~7(Eslahchi et. al
2005),

b
f fO) dx = Inpop(f) = 4.7 X 107° +

_3[9.3801 9 (a) + 9.3802 y(b)

10 [ _3y], (14)
+37.5206 1(2.5022 x 1073)

where the optimal locations of the endpoints

are:

a=—2.789016 x 1072,b = 2.839074 x 1072

Here, we show how to couple two closed
quadrature rules, both having the same degree
of precision, to yield a more accurate hybrid
rule. The ingredients of the hybrid rule are a
numerically improved Gauss-Lobatto
quadrature rule, and Bool's rule enhanced by
Richardson extrapolation.

2. Bool’s Rule Enhanced by Richardson
Extrapolation.

The closed Newton-Cotes quadrature rule for
n =4 is (five abscissas) known as Bool’s
rule, and is defined by the following formula,

b
f f(x) ~ IBool(f)
:Eﬁyvﬁn+fwﬂ+3ﬂﬂ%)+fkgw
45 +12f(x,)
_8_h7f(6)( ) (15)
9457 W

The corresponding error is,

(2n)’
21 X 6!

EBool(f) = f(s)(.u) +

where the quadrature points x; = a + ih, i =
0,1,2, ...n, and the step size is h = ? with

degree of precision five. Here we show how
to enhance the Bool’s rule by Richardson
extrapolation. The mechanism of Richardson
extrapolation is to begin with an initial
approximation at a certain level of refinement,
and then compute a successive approximation
using a finer level of refinement. Finally,
apply the following Richardson extrapolation
formula (Zlatev et. al. 2018) vyielding an
enhanced accuracy of the approximated
integral,

(k-1) _ (k-1)
4k — 1, (16)
4k — 1 ’

b
f f(x)dx = Iik) =
a

forn>2%k>1.

Starting with k = 1 in (16) we have
o _ ;0
4137 — I,

1) _
1,7 = 3 ,

(17)
where,

LEO) = Igoo1 (f)-
Now for I5” we have nine points, thus

19

( h 3B 1
_ b 70F@ + F)] + 32 f<a+§21+f<a+ 27>
5 +f<a+7>-|-f<a+7

)

+12[f(a+ h) + f(a + 3h)] + 14f (a + 2h)

By substituting 7 and I1{”) into equation
(17), we obtain

Irgoot (F) = IV (F)

7[f (@) + f(b)] _S}Ef(a+h) +§}(1a+ 3h)]
Al e |
\ +f<a+7>+f(a+7) J

where the truncation error of the enhanced

quadrature rule If) can be computed by
Taylor expansions of the functions involved

in IV to yield,
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5 (2h)?
336 X 6!

277 (2h)°
11520 x 8!

Elil)(f) — f(6)(‘u) + f(B)(‘u) + -,

Comparing the error EI” () with Egooi(F),
one could notice that the magnitude of the

coefficient of the leading term of EI{" has
decreased by an amount of % compared to the

corresponding term in Eg,o; (f).
For k = 2 in (16), we have

(1) (1)
417 — 1
2) _
0= — (18)
where,
Jiey
8

h
= 1351 7@ + F)]

\
I[f<a+ )+f(a+ )+f< ]|
+32| (a+ ) + () + (a+ 11h|
I 13k 15h I
[ +f<a+T)+f(a+T) |

sl esd)ore B eres B )

+ 14[f(a +h) + f(a+ 2h) + f(a + 3h)] ;.

)

Substituting IV and ISV into equation (18)
yields,

/@

4

2h
= 5025 77[f (@) + f(D)]

T + ]
Do) |

Lo (a+ 2 4 (0 20 4 (w250
(+

Bes(oZ)er(oe )

+176[f(a+ h) + f(a +2h) + f(a + 3h)] ¢,

—_—

the truncation error of the enhanced

quadrature rule If) and can be computed

similarly to the error of If), so

9 (2h)7
8960 X 6!

421 (2h)°

A1) g
2157608 W

ELP(f) = - fOW -

A similar process can be followed for k = 3.
To prevent repetition, in a similar analogy to
the derivation in Sections 3 and 4, one could
linearly combine the numerically enhanced
Gauss-Lobatto quadrature rule with Bool's
rule enhanced by Richardson extrapolation,
yielding a closed-type quadrature rule
IcgoLop (f), and the corresponding truncation
error is,

ECHR(f) = O(hg)- (19)
RESULTS

Some integral examples are presented in
Table (1) to verify the efficiency of the open-
type mixed quadrature rule Ioyr(f). For
example, the following logarithmic integral
has non-elementary anti-derivative as:

2
I, = f In[In(x)]dx = —Li(2) + y + 2log(log 2)
1
~ —1.20097,

where Li(x) = ld(y)

integral function, and y is the Euler-
Mascheroni constant; thus such an integral
only has a numerical value. Other integral
examples of singular-kernel are presented,
such as elliptic integral I,, exponential
integral I, error function I, Dirichlet integral
I; (Kober, 1940), and incomplete gamma
function I,. Concerning the Dirichlet integral
I;, we need the variable transformation w =
e ~* to transform the indefinite integral I, to a
definite integral as follows:

is the logarithmic

I7=fm5iﬂdx:ﬁ2flwdw.
° 0 win()

Now, we recall the following transformation:
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fabf(w)dw _ f_llf [(b - a)xz+ b+ a] (b ; a) dx.

Thus, one has

waiﬂ dx f sin[in (7)| i
0 -

Y Py

Also, some integral examples of the closed-
type mixed quadrature rule are presented in
Table (2) to verify the efficiency of the
closed-type mixed quadrature rule Icyr(f).
For example, the following logarithmic
integral has non-elementary anti-derivative:

2
I = f e®" dx = Ei(e?) — Ei(e) ~ 255.676,
1

where  Ei(x) =—[7,%=dy  is the

exponential integral, thus the integral I; only
has an approximate value. These approximate
integral values are used for verification
purposes by comparing them with the
numerical results obtained by the proposed
rules and are referred to as near-exact values.
Other integral examples of non-elementary
anti-derivatives are also presented, such as the
Gaussian  integral  I,(encountered  in
probability density), the sine integral, and the
exponential integral 1,.

DISCUSSION

For numerical computations, we build up
some numerical routines by Mathematica 3.1.
software. Table (1) shows the approximate
values of some improper integrals, either with
singular integrands or with infinite intervals
of integration. With a small number of
abscissas, the observed accuracy is quite good
and very satisfactory. It should be noted that
the relative errors related to the approximate
results shown in Tables (2) and (3) are much
smaller than those in Table (1). This variance
between both categories can be traced back to
the fact that the integrands in Table (2) are
quite well-behaved functions, unlike the
integrands in Table (1) which can be

considered bad-behaved functions. For
instance, the Dirichlet integral I, in Table (1)
has a singularity at both endpoints of the
integration interval. Also, the integrand of I;
in Table (2) experiences very sharp variations,
especially in the sub-region (1.5,2) as shown
in Figure (1). Thus, to achieve higher
accuracy for Ipyr (f), the rule Iypo (f) needs
to be enhanced by an adaptive algorithm.
Thus, one urgently needs a local-adaptive
algorithm ~ for  Iypo(f) and  Iypc(f)tO
conveniently capture the integrand behavior
rather than only relying on four nodes.
However, such integrand behavior will be
inherited in the adaptive algorithm; the
adaptive quadrature algorithm for integrals in
Table (1) may suffer from slow convergence
and thus need quite a few iterations, as shown
in Table (4). Tables (4) and (5) show that the
approximate results agree with the near-exact
ones up to four digits as we set up the
termination criterion of the adaptive algorithm
to 1075,

1000
800
600
400

200

12 1.4 1.6 1.8 20

Figure (1): The function f(x) = e¢” along the interval
[0,2]

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.



Al-Mukhtar Journal of Sciences 38 (2): 173-188, 2023

Table: (1). Numerical results computed by the open-type hybrid quadrature rule I,z (f) compared with its constituent rules Ixq.,(f) rules and Iypo (f).

Integral/Transformed Int. Near-Exact

Ixgr2()

INDO(f)

Iour(f)

Relative Error

2 ~ —1.20097
I =f In[In(x)]dx
1

=g [ nfm (5]
1=3 1nn 2 x

T
12=f v1—x*dx
1 i
IZ=—f V16 — (x + 1)*dx
8J)4
I —fwe_xd
3= L x X

1 e_(%)

1 1+x

~ 0.8740191847

~ (0.219384

13:

o rQ) =1

~ 0.62145

1 e_(%) + e_(lzﬁ)]
1522,’-_1 x2+2x+5

-x%/2 dx

dx

1 (> ~0
I = Erfc(1) = Ef e 0.15865525
v 1
2
~Im(Z5)] 2

1 (le
IGZ_J 1
V2mJ_q +x

P j“’sinx
7=
0o X

1
I, = _t X+ 1/]
’ j—l(x+1)1n(xil)

~ 1.5708

I
=
I
N

—1.186269827214

0.8747043456216

0.21841054884110

0.9852958834667177

0.621317534623

0.1587331354611

1.6085019683186124

—1.150942419465

0.8787134586882

0.23028552760062

0.9499682436581703

0.6232082213946

0.15817808821860

2.076910604996239

—1.186203619128

0.8747118592129

0.21843280407190

0.9852296749459611

0.6213210780121

0.1587320952315

1.609379826084149

ExeLr = 1.224350377214 x 1072
Enpo = 4.165913561106 x 1072
Eour = 1.2298632432924 x 102

ExeLs = 7.839197005632 x 104
Enpo = 5.37090490231107 x 1073
Eppr = 7.925162982014 x 10~4

Exgrr = 443690444836492 x 1073
Enpo = 4.9691848380501 x 102
Eonr = 4.335460234298 x 1073

Exers = 1.47041165332823 x 1072
Enpo = 5.00317563418297 x 1072
Eour = 1.477032505403886 x 1072

Exers = 2.125507968272 x 10~4
Enpo = 2.8298305931829 x 1073
Eour = 2.0684898452106 x 10~*

Ixgiz = 4.908852857186 x 10~
Iypo = 3.0075632607556 x 1073
Iour = 4.8432874516111 x 10~*

Exiz = 2.3553490365081 x 102
Enpo = 2.60795542073356 x 10~
Eour = 2.30205838669871 x 10~2

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.

183



Al-Mukhtar Journal of Sciences 38 (2): 173-188, 2023

Table: (2). Numerical results computed by the closed-type hybrid quadrature rule Iz (f) compared with its constituent rules Ixs.»(f) rules and Iypc(f).

Integral

Near-Exact

IGi2(f)

Inpc(f)

Icur(f)

Relative Error

Zx
Ilzfee dx
1

2 2
12=f e ™ dx
1

Zsin x
13 = dx
;X

I 2e_xd
= —ax
4 ) x

I _fl dx
57 )y 1+t

~ 255.6758679186

~ (0.170483

~ 0.86697

255.820070562722

~ 0.1352572579499946 0.13525734814014

253.89134362084

0.13525655014006

~ 0.6593299064355118 0.6593299064397252 0.6593299064006406

255.81645588145

0.1352573466445

0.659329906439652

0.17048364153294074 0.1704813324558944 0.17048363720543466

0.8669767626543958 0.8669225103807843 0.8669766609786879

Exelo = 5.6400568941 x 10~
Eype = 6.9796352399 x 1073
Ecyr = 54986794034 x 10~

Exeiz = 6.6680450970 X 1077
Enpe = 5.2330623751 x 1076
Ecyr = 6.55747403635 X 1077

ExgLz = 6.3904387767 x 10712
Enpc = 5.288887503 x 10711
Ecyr = 6.2793036395 x 10712

Exers = 1.27781034023 x 10~°
Enpe = 1.226648034 x 10~°
Ecyr=1.2524266050 x 10~°

EKGLZ = 4.3545929803 X 10_6
Enpe = 5.8222066735 x 1075
Ecyr = 423731630684 x 107
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Table: (3). Numerical results computed by the closed-type hybrid quadrature rule I-po.0p (f) cOmpared with
its constituent rules Irgoo: (f) rules and Iy op-

Integral IrBooi(f) Inion () IcgoLob Relative Error
2 0.1352600678077 0.1352461059959 0.135246113746  Enp,o; = 2.0774173353466 x 1075
fl e dx Envop = 8.2449949905523 x 1075

Ecporop = 8239264762395 x 1075

Zsin x 0.659329912197 0.6593298963945 0.659329900299  Egpoo = 8.739114546289 X 10~°
fl e Envop = 8.2449949905523 X 1075
Ecporop = 8.2392647623949 x 1075

2gx 0.170475250379 0.1705180434985: 0.1705180554623' Eppoe; = 4.7941954266458 x 10~5
L - Envop = 2.03068488283273 x 10~

Ecporop = 2.0313866405311 x 10~

Table: (4). Numerical results computed by the Closed-type hybrid quadrature rule Iz (f) compared with
its constituent rules and I, (f) rules and Iy (f) using an adaptive algorithm with termination
criterion 1075,

Iterations Iterations Iterations
Integral Iker2(f) Iterations Inpc(f) Iterations Icur(f) Iterations
2 255.675894812 2 255.667210454 12 255.675608551 10
I =f e® dx
1
I —fze"‘z dx 0.135257258 1 0.135249563462 6 0.135254562 1
, =
1
I, =fzsinxdx 0.659329906 1 0.659336124 6 0.659330466 1
0.170480601 1 0.170479739 9 0.170480601391 1

1 X
1 i —e_x d
= x
+= |

Table: (5). Numerical results computed by the open-type hybrid quadrature rule I,z (f) compared with its
constituent rules Ix¢.,(f) rules and Iypo (f) using adaptive algorithm.

Integral Ikei2(f) Iterations Inpo (F) Iterations Icur(H) Iterations
I, —1.2009667766545051 10 —1.200967848901904' 12 —1.20096674432545 10
= len[ln(x)]dx
I, ' 0.8740193510435356 7 0.8740193218057818 9 0.8740193527868432 7
- T xdx
Is ’ . 0.621449500800718 1 0.6214593348845058 12 0.6214519128864372 5

o o
=f0 de
17:f°°si:xdx 1.5888888194648858 13 1.5689338860146185 10 1.5886295131152703 13

0

derivative-based Newton-Cotes formulae. The
proposed hybrid quadrature rules are found to
perform  better than their ingredient

CONCLUSIONS

Open and closed hybrid quadrature rules

Iour(f), Icur(f), and Icgopon(f) have been
proposed in this paper. Their ingredients are

some enhanced quadrature rules, such as the
Kronrod-Legendre pair, Bool’s rule enhanced
by Richardson extrapolation, the numerically
enhanced Gauss-Lobatto quadrature rule, and

quadrature rules through error analysis, as
evidenced in equations (9), (12), and (19).
Strictly speaking, the degree of precision of
the proposed hybrid quadrature rules is (p +
2), where p is the degree of precision of its
ingredient rules. A variety of integral

© 2023 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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examples have been considered for
verification purposes that correspond to
numerous applications in science and
engineering. Considering that we implement
low-order quadrature rules of either the Gauss
or Newton-Cotes type, the observed accuracy
is satisfied. The performance of such hybrid
rules can be enhanced by the adaptive
quadrature rule as shown in Tables (4) and (5)
with a tolerance of 1075. Overall, all the
results obtained are very satisfactory.
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