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Abstract: This paper studies the concept of the a-quasi-*-IFP (resp., a -*-reflexive) *-rings, as a
generalization of the quasi-*-IFP (resp., *-reflexive) *-rings and every quasi-*-IFP (resp., *-
reflexive) *-ring is a -quasi-*-IFP (resp., a-*-reflexive). This paper also discusses the sufficient
condition for the quasi-*-IFP (resp., *-reflexive) *-ring in order to be a-quasi-*-IFP (resp., a-*- re-
flexive). Finally, this study investigates the a-quasi-*-IFP (resp., a-*-reflexivity) by using some

types of the polynomial rings.
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INTRODUCTION

Throughout this paper, R denotes an associa-
tive *-ring with unity and @ denotes a nonzero
nonidentity endomorphism of a given *-ring,
unless specified otherwise. IFP stands for “in-
sertion-of-factors property”, R is semicommu-
tative or has IFP if the right annihilator r(a) =
{x € Rlax = 0} of every element a €R is a
two-sided ideal. A *-ring R is said to have IFP
when all ab € R,ab = 0 which implies that
aRb = 0 by (Kim & Lee, 2003). In both stud-
ies (Baser & Kwak, 2010) and (Baser et al.,
2008) discussed an endomorphism a of a ring
R, the endomorphism « is called semicommu-
tative if ab = 0 implies aRa(b) = 0 for a €
R. Also, aring R is called a- semicommutative,
if there exists a semicommutative endomor-
phism « of R.

Another study (Zhao & Zhu, 2012) shows that,
an endomorphism a of a ring R is called reflex-
ive whenever aRb = 0 for a,b € R, bRa(a) =
0. A ring R is called a-reflexive if there exists
a reflexive endomorphism a of R.

A *-ring R is said to have *-IFP if all a,b €
R,ab = 0 implies aRb* = 0. For more details

see (Aburawash & Saad, 2014). By
(Aburawash & Saad, 2019) R has quasi-*-1FP
ifall a,b € R,ab = ab®™ = 0 implies aRb = 0,
a *-ring R is called *-reversible (resp., *-
reflexive) if for all a,b € R,ab =ab* =0
(resp., aRb = aRb* =0) implies ba =0
(resp., bRa = 0).

According to (Abdulhafed, 2019), a *-ring R is
said to be *-rigid if for a, b € R, ab? = abb* =
0 implies ab = 0, an a be a *-endomorphism
of R. a is called a *-rigid *-endomorphism if
aa(a) = aa(a*) =0 implies a =0 for all
a € R. A *-ring R is called a-*-rigid if there
exists a *-rigid *-endomorphism a of R and a
*-endomorphism a of a *-ring R is called *-
reversible if whenever ab = ab* = 0, then
a(b)a(a) =0, for a,b €R (also,
a(b)a(a) =0). A *ring R is called a-*-
reversible if there exists a *-endomorphism «
on R. A *rigid *-rings are equivalent to *-
reduced *-rings.

In view of the studies mentioned above, this
paper introduces the class of a-quasi-*-IFP
(resp., a-*-reflexive) *-rings, which is the *-
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version (and also a generalization) of the quasi-
*-IFP (resp., *-reflexive) *-rings.

Moreover, some properties and results of these
classes of *-rings are investigated. The class of
a-*-reflexive *-rings is introduced as a gener-
alization of *-reflexive and *-reduced *-rings,
since, by definition, *-reflexive *-rings are a-
*-reflexive *-rings and a-*-reversible is a-*-
reflexive.

Also, other relative results are given. Here, fi-
nally, we conclude the results of the paper by
explaining the diagram and the relations among
the corresponding classes.

a-*-1FP rings

In this section, a-*-IFP *-rings are introduced
as a generalization of *-IFP *-rings.

Definition 1. A *-endomorphism a of a *-ring
R is called *IFP if whenever ab = 0, then
a(arb*) =0 for all a,b,r € R. A *-ring R is
called a-*IFP if there exists a *-
endomorphism a on R.

It is clear that a ring R is *-IFP if R is [p-*-
IFP, where I is the identity *-endomorphism
of R. It is easy to see that every *-subring S
with a(S) € S of an a-*-IFP *-ring is also « -
*-IFP.

Obviously, in general, the reverse implication
in the above definition does not hold by the fol-
lowing example which also shows that there
exists *-endomorphism a of a -*-IFP *-ring R
such that R is not a -IFP.

Example 1. Assume both [ to be a field, the *-
ring R =F@®F with exchange involution
(a,b)" = (a*,b") and *-endomorphism
a:R - R is given by a((a, b)) = (b, a) for all
a,b € F. Since Since A=(1,0), B=(0,1),A =
(1,0 ),B=(0,1)R clearly a-*-IFP, but it
does not have a-IFP.

Proposition 1. Let R be a- *-IFP *-ring and o
is *-monomorphism on R, then R *-IFP.

a-quasi-*-1FP rings

In this part of the paper the focus is on the a-
quasi-*-IFP *-rings and how to introduce a
generalization for quasi-*-IFP *-rings.

Definition 2. A *-endomorphism « of a *-ring
R is called quasi-*-IFP, when ab = 0 = ab”,
then a(arb) =0, for all a,b,r € R (conse-
quently a(arb™) = 0). A *-ring R is called a-
quasi-*-IFP if there exists a *-endomorphism
aonR.

It is clear that it is needed to exclude the identi-
ty *-endomorphism I, because the *-ring R is
Ig-quasi-*-IFP if and only if R is quasi-*-IFP.
In general, a-quasi-*IFP *-ring R is quasi-*-
IFP if a is a *-monomorphism on R.

Proposition 2. Let R be a-quasi-*-IFP *-ring
and o is *-monomorphism on R, then R quasi-
*IFP.

Proposition 3. Let R be a is *-monomorphism
a *ring. If R is a-quasi-*-IFP and it has *-
IFP, then R is [FP.

Proof. It is obvious, since ab = 0, implies
aRb* = 0, by the *-IFP property and R «a -
quasi-*-IFP, we have a(arb) =0, for all
a,b,r € R. Hence, aRb =0 since a is *-
monomorphism. Thus R is IFP.

It is clear that, a ring R is quasi-*-IFP if Ris Ip-
quasi-*-IFP, where Ip is the identity *-
endomorphism of R. It is easy to note that eve-
ry *-subring S with a(S) € S of an a-quasi-*-
IFP *-ring is also a-quasi-*-1FP.

Notice that, in general, the reverse implication
in the above definition does not hold by the fol-
lowing example, which shows also that, there
exists *-endomorphism a of a-quasi-*-IFP *-
ring R such that R is not a-IFP.
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Example 2. The *-ring R = Z,®Z,, with the
changeless involution * defined as (a,b)" =
(a*,b*) and *-automorphism a:R — R given
by a((a,b)) = (b,a) is not a-IFP but, it is
IFP, since the nonzero element A(0,1),B =
(1,0) satisfies that AB = AB* =0, while
a(A)RB # 0 and also ARa(B) # 0, ARB =
0. Moreover, R is a-quasi-*-IFP.

Proposition 4. Let R be an a-*-reversible *-
ring, then R is a-quasi-*-1FP.

The converse to Proposition 4 is not true ac-
cording on the following example:

Example 3. The *-ring R = (g E) over a

field F, with the adjoint involution * is a-
quasi-*-IFP. Moreover, R with the *-
endomorphism a:R - R defined by

a b a
(G )=
by (Abdulhafed, 2019). The following example
declares that, T,(R) is not an @-quasi-*-IFP *-
ring, even if R is an a-rigid *-ring. Since *-

endomorphism a of a *-ring R is also extended
to the *-endomorphism & of T,(R) defined by

@ ((ayy)) = (a(ay)).

Example 4. Consider R be a commutative a-
rigid *-ring. Then, the *-ring T,(R) is not &-
quasi-*-IFP, since the matrices

—-b\ . .
), is not a-*-reversible
c

01 -1 0
[0 0 0 O
A= 00 0 O0f
0O 0 0 O
0O 0 0 O
_ [0 0 0 1
0O 0 0 O
satisfy AB =AB* =0 while,
a(Ad)a(C)a(B) # 0, while,

a(A)a(C)a(B) % 0 for

0 0 0 O
(o 0 1 0
0 0 0 O

where a(e) = e, by (Abdulhafed, 2019). Thus
a(A)a(T,(R))a(B) # 0 and so T,(R)is not &-
quasi-*-IFP. Similarly, it can be proved that
T,,(R) is not &-quasi-*-IFP for n > 5.

Furthermore, the class of the a-quasi-*-IFP *-
rings is closed under the finite direct sums
(with changeless involution). In addition to as-
sume R be a *-ring. Then, both eR and
(1 —e)R are a-quasi-*-IFP for some projec-
tion e in R with a(e) = e, if and only if R is a-
quasi-*-1FP.

a-reflexive rings with involution

In this section, a-*-reflexive *-rings are intro-
duced as a generalization for *-reflexive and *-
rigid *-rings.

Definition 3. A *-endomorphism a of a *-ring
R is called *-reflexive when aRb = aRb* = 0,
then, a(bra) =0, for all a,b,r € R (conse-
quently a(b*ra) = 0). A *-ring R is called a-
*-reflexive, if there exists a *-endomorphism «
on R.

Every *-reflexive *-ring is clearly a-*-
reflexive, but, on the opposite side it is not true
as shown by the following example.

% %), with the

*-endomorphism

Example S. The *-ring R = (

adjoint involution * and
a:R — R is defined by

(@ D)= )

is a-*-reflexive, since if the matrices

_ (a1 by ) bz)
a=(G 2)e=(5 2)er

satisfy ARB = ARB* = 0, then, we get the
equations: a,aa, = a,ac, = 0,a,ab, +
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aleZ + b1CC2 = _alabz + albaz + blcaz =
0 and ¢;cc, = c;ca, = 0, which implies that:

a(Brd) = (azaa1 0 )

0 C,CCq
Moreover, R is not *-reflexive, since

0 aybcy + byccy
0 0

Next, here it is also deduced that, it excluded
the identity *-endomorphism I, because the *-
ring R is Ip-*-reflexive if and only if R is *-
reflexive. In general, a-*-reflexive *-ring R is
*-reflexive if @ is a *-monomorphism on R.

BRA = ( )#0.

Proposition 5. Let R be an a-*-reflexive *-ring
and o is *-monomorphism on R, then R is *-
reflexive. 1t is clearly visible that, there is no
connection between either a- reflexive or a-*-
rigid and a-*- reflexive *-rings. According to
the example 5, there exists an a-*-reflexive *-

ring R = (Z Z) which is not a- reflexive.

0 Z
Since
BRa(A) = <a2(c)ta1 azabclz-ci-cilzbq) £0,
and
BRa(A) = <a2(c)ta1 aZbcclz-;CTZCCl) 20

Example 6. Consider R = Zg @ Zg with usual
addition and multiplication with exchange in-
volution (a,b)* = (a*,b*), and let a: R —
R be an *-endomorphism is defined by
a((a,b)) = (b,a). For a = (4,2),b(2,0) €
Zg @ Zg, we get aRb = aRb™ = 0.

However, ba(a) = (4,0) # 0 and a(b)a =
(0,4) # 0, entailing neither bRa(a) = 0 and
nor a(b)Ra = 0. Hence, R is neither right nor
left a- reflexive, but, it is a-*-reflexive.

Proposition 6. LetR be a *-reflexive *-ring.
Then the following are equivalent.

1. Ris a-*- reflexive.
2. If arb=0=arb*for all ab,r €R, then
a(arb) = a(arb®*) =0.

Proof. 1 = 2. Let arb = arb™ = 0, where
a,b,r € R, then «a(arb)= alarb*)=0.
Hence, a(b)a(r)a(a) =0 =a(b)a(r)a(a)
for all r € R, since R is *-reflexive, then, we
get that a(a)a(r)a(b) =0 = a(a)a(r)a(b®)
which implies a(aRb) = a(aRb").

2=>1. Let arb=0=arb* for a,b,r €R
which implies by 2 that a(arb) = a(arb*) =
0. Since R is *- reflexive, then a(bRa) = 0.

Proposition 7. Let o be a *-monomorphism on
a *ring R. Then, R is an o-*- reflexive *-ring if
and only a(a)a(r)a(b) =0 = a(a)a(r)a(b*)
if implies bra = 0 = b*ra for all a,b,r € R.

Proof. Let a(a)a(Ma(b) =0 =
a(a)a(r)a(b®) for a,b,r € R, then

a(a))a(a())a(a(a)) = a?(bra) =0 =
a(a?))a(a())a(ala)) = a?(b*ra)Since,
R is a-*-reflexive and « is a *-monomorphism
imply bRa = 0 = b*Ra.

Conversely, let arb=arb* =0, where
a,b,r € R, then, a(arb) = a(a)a(r)a(b) =
0 =a(a)a(r)a(b*) = a(arb™) by hypothesis
so bRa = 0 = b*Ra.

It is easily to show that the class of a-*- reflex-
ive *-rings is closed under finite direct sums
(with changeless involution).

Proposition 8. The class of o-*- reflexive *-
rings is closed under finite direct sums.

The next step, an example is needed to explain
that *-reflexivity is not closed under taking *-
subrings. The full matrix ring M,,(R) over a *-
ring R with adjoint involution and the *-
endomorphism a: M,,(R) = M,,(R) is defined

by
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a b\ _(a -—-b
(@ D)-(2 D
It is not a-*-reflexive for n > 2, according to
the following example:

Example 7. The ring R = M(Z,) is prime and
*-reflexive. The upper triangular matrix ring

4, 7
T,(R) = ( 02 Zi) over Z, is a *-subring of

R. R is clearly a-*-reflexive, but T,(R) is not,

since both matrices A = (8 (1)) and B =

(8 (1)) of R satisty

ARB = ARB* = 0,but a(B)Ra(4) =

0 -1 /1 —-1\/0 0y_(0 -1

o )G ) 1)=( o)=0
According to the study by [(Abdulhafed,
2019)] every *-reduced equivalence *-rigid,
[(Aburawash & Saad, 2016), Example 4.2 and
Proposition 4.6 | and [(Aburawash & Saad,

2019), Example 7 and Corollary 3], we deduce
the following important results.

Corollary 1. Every *-rigid *-ring is a-*- re-
flexive.

The opposite of the previous Corollary 1 is not
true since, by Examples 5 it is obtained a-*-
reflexive and it is not *-reduced.

Corollary 2. Every *-Baer *-ring is a-*- re-
flexive.

Corollary 3. Every *-domain is o-*- reflexive.

Corollary 4. Every *-ring with semiproper in-
volution is a-*- reflexive.

Now, in contrast to the previous corollary, it is
not necessary to be true as shown in the follow-
ing example.

Example 8. From [(Aburawash & Saad, 2019),
Example 9], if F is a field, then the ring
R = F®F°P, with the exchange involution * is

defined by (a,b)* =(b,a) and the *-
endomorphism a =x for all a,b € R, it is ob-
vious that an a *-reflexive but, * is not semi-
proper. Indeed, the element 0 # A = (0,a) for
some nonzero element a of F satisfy ARA™ =
0.

The following proposition and example show
that the class of a-*-reflexive *-rings general-
izes strictly that of a-*-reversible *-rings.

Proposition 9. Every a-*-reversible *-ring is
a-*- reflexive.

Proof. Let aRb = aRb* =0, then, ab =
ab® = 0 implies rab =rab® =0 for every
r € R. So that a(bra) = a(b*ra) =0, from
the a-*-reversibility of R. Thus a(bRa) =
a(b*Ra) = 0, hence, R is a-*- reflexive.

The question that, when a a-*-reflexive *-ring
is a-*-reversible is answered by the following
proposition.

Proposition 10. 4 *-ring R is a-*-reversible if
and only if R has quasi-*-IFP and a-*- reflex-
ive.

Proof. The necessity is clear to sufficiency,
let’s consider ab =ab* =0, for some
a,b € R. Since R has quasi-*-IFP, then,
aRb = aRb™ = 0. The a-*-reflexivity of R
implies aRb = aRb* = 0. Hence a(ba) =
a(b*a) =0, and R is a-*-reversible. By the
Corollary 1, we can get the following result.

Corollary 5. Every a-rigid *-ring is a-*- re-
flexive.

The following example can show that the con-
verse of Corollary 5 is not true.

Example 9. By looking to the study [(Baser et
al.,2009), Example 2.7 (i)], the trivial extension
*-ring T(Z4,Z4), with the adjoint involution *
and the *-endomorphism a =* is not semi-
prime (so not a-*-rigid), but it is a-*- reflex-
ive.
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Proposition 11. Let’s consider a to be a *-
monomorphism on a *-ring R, the following
Statements are equivalent:

i. Ris a-* reflexive.
ii. 7.(aR) = L,(Ra) for every element a € R.
iii. For any two nonempty subsets A and B
of R, ARB = ARB*implies a(BRA) =0
(consequently a(B*RA) = 0).

Proof. (i) = (ii). Let x €r.(aR), then,
aRx = aRx* = 0. Since R is a-*- reflexive,
we have a(x)a(Ra) = a(x*)a(Ra) = 0, but
a is a *-monomorphism, so xRa = x*Ra =0,
for every a € R. Hence, xRa = x*Ra = 0 im-
plies x € [,(Ra), and we get 1,.(aR) S L,(Ra).
Similarly, [,(Ra) € r.(aR) and so r.(aR) =
l.(Ra) follows.

(ii) = (iii).Let ARB = ARB*for some subsets
A and B of R. Then B € 1,(AR) and so
aRb = aRb* =0 for all a € A and b € B and

hence b €rnr(aR)=1,(Ra) and bRa=
b*Ra =0. which implies «a(BRA) =
a(B*RA) = 0.

(iii) = (iv). is obvious.

From Proposition 11, we have the following
corollary.

Corollary 6. Let a be a *-monomorphism of a
*ringR, then the following statements are
equivalent:

i. R is *- reflexive.
ii. R is a-*- reflexive.
iii. r,(aR) = l,(Ra) for every element a € R.
iv. For any two nonempty subsets A and B of
R, ARB = ARB* =0 implies a(BRA) =0
(consequently a(B*RA) = 0).

Again, a *-domain *-ring is *- reflexive
[(Aburawash & Saad, 2019), Example 4], then,
we have:

Corollary 7. Every *-domain *-ring is a-*- re-
flexive.

The converse of Corollary 7 is not true, since
T(Z4,Z4) is not a domain *-ring in the Exam-
ple 9

Proposition 12. Let’s assume o be *-
endomorphisms of a *ring R. If Ris a-*- re-
flexive *-ring, then aRb = 0 = aRb* for
a,b €R implies a®(a)Ra*(b) =0=
a®(a)Ra®(b*) and a*(b)Ra*(a) =0 =
ak(b*)Ra*(a)for all k > 1.

For *-endomorphism a and projection e of a *-
ring R such a(e) =e, that, we have *-
endomorphism &:eRe = eRe is defined by
d(ere) = ea(r)e, one can show that *- reflex-
ive property is extended to the *-corner.

Proposition 13. Let R be a a-*- reflexive *-
ring, then, the *-corner eRe for every projec-
tion e of R is also a-*- reflexive.

Proof. Let R be a-*-reflexive and a = exe,
b=eye€eRe such that a(eRe)b =
a(eRe)b* = 0. Then exeReye = exeRey*e =
0 implies
a(eye)Ra(exe) = d(ey*e)Ra(exe) = 0,
since R is a-*- reflexive. Therefore
a(b)(eRe)a(a) = a(b*)(eRe)a(a) =0 and
so eRe is a-*- reflexive.

Proposition 14. Let R be a *-ring with *-
endomorphism o such that a(e) =e for
e2 =ee* =e €R If e is a central projection
R, then, eR and (1 — e)R are a-*- reflexive if
and only if R is o-*- reflexive.

Proof. It is enough to show the necessity by
Proposition 8. Suppose that eR and (1 —e)R
are a-*-reflexive for a central projection e € R.
Let aRb = 0 = aRb* for a,b € R. Then,

ea(eR)eb = 0 = ea(eR)eb”,
and

(1—-e)a(l1—e)R(1—e)b =0
=(1- e)a(l1- e)R(1
— e)b”.
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By hypothesis,

0 = @(eb)eRia(ea) =
ea(b)ea(a) = ea(b)Ra(a)
and

0=a&((1—e)b)(1—e)Ra((1—e)a) =
1-e)alb)(1—e)R(1 —e)ala) =
(1-e)a(b)Ra(a) = 0.

For a ring R and an endomorphism, a:R — R
the skew polynomial ring (also called on Ore
extension of endomorphism type) R[x; «] of R
is the ring that is obtained by giving the poly-
nomial ring over R with the new multiplication
xr = a(r)x forall v € R.

Proposition 15. If R and R[x;a]
(resp., R[[x; a]]) are *- reflexive, then, R is a-
*_rigid.

Proof. Let us consider aa(a) = aa(a*) =
Oandp = ax,q = a € R[x; a] for a € R, then

pRq = axa = aa(a)x = 0,pRq" =

axa® = aa(a*)x = 0. Since R[x; a] is *- re-
flexive, hence qRp = aax = a’x = 0

,@'Rp = a*ax = aax = 0 and so
a’ = a*a = 0. Since R is *-reduced, we get
a = 0.

According to (Abdulhafed, 2019) and Proposi-
tion 15 the following results are straightfor-
ward:

Corollary 8. If both R and R[x; a]
(resp., R[[x; a]]) are a reflexive *-ring, then,
R is a-*-rigid.

Corollary 9. If R is an a-*-rigid *-ring and
R[x; a] (resp., R[[x; al]) is a reversible *-ring,
therefore, R is *-reflexive.

Corollary 10. If R is an «a-*-rigid *-ring, then,
R[x; a] (resp., R[[x; a]]) is *-reflexive.

If the *-ring R[x; «] is *-reflexive, then, R is *-
reflexive and the converse is not correct. Also,
the converse of Corollary 9 is wrong accord-
ing to studying the example in (Abdulhafed,
2019).

Next, the a-*-reflexivity and a-quasi-*-IFP do
not imply each other.

Example 10. For a commutative *-ring R,

a b c
T3(R) = {(0 a d)
0 0 a

it has quasi-*-IFP, but, it does not have *-
reflexive by [(Aburawash & Abdulhafed,
2018a), Example 5]. Thus, R is idg-quasi-*-
IFP, but it is not idz-*-reflexive.

ab,c,d € R},

As, a consequence from Example 10, T, (R) is
not a-*-reflexive for n > 4. Clearly, if R is a
commutative *-ring, hence, the *-ring:

Tn(R) =

(/@ Qi Q13 Qip \
1[0 a ay - aZn\ |
4k0 0 a - agn) a,a;; eR,nz3$
L 0 O 0 0 a J
, 1t is not a-*-reflexive according to
(Abdulhafed, 2019) and is quasi-*-IFP. How-
ever, it is clearly evident that T,(R) is not « -
quasi-*-IFP and so T,(R) is not quasi-*-IFP
forn > 4 as reported in Example 4.

We get the same results as stated in both stud-
ies [(Aburawash & Abdulhafed, 2018a), Corol-
lary 11(2)] and (Abdulhafed, 2019).

Corollary 11. If R is a semiprime *-ring, then,
the trivial extension T (R, R), with adjoint invo-
lution is a-*-reflexive.

Corollary 12. Let’s assume R to be a reduced
*ring and a is the *- endomorphism on R,
then, the *-ring T(R,R), with componentwise
involution * is @-*-reflexive.
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Corollary 13. Suppose R be an a-rigid *-ring,
then, the *-ring T(R,R), with componentwise
involution * is @-*-reflexive.

Corollary 14. Let R be a rigid *-ring, then, the
*-ring T(R, R), with componentwise involution
*1is a-*-reflexive.

The trivial extension T(R, R) of a *-ring R can
be extended to a *-ring

a b c
T3(R) = (0 a d),
0 0 a

and *-endomorphism « of a *-ring R, it also is
extended to the *-endomorphism @&: T5(R) —
T5(R) is defined by &(ay;) = (a(a;;)) with

involution defined as:

a b c\" a d c
(0 a d) =(O a b)
0 0 a 0 0 a

The following example shows that T;(R) can-
not be &-*-reflexive even if R is a-rigid-*-ring.

Example 11. Let R be a commutative a-rigid
*-ring. Then, the *-ring T3(R) is not @&-*-
reflexive, since the matrices

1 0 0 0 00
A=<O 1 o>,3=<o 0 1>and
0 0 1 0 00

01 0
cz(o 0 0)eT3(R),
0 0 0

Satisfy

ABC = ABC* = 0,
while,
a(C)a(B)a(A) # 0,

where a(e) = e, according to (Abdulhafed,
2019).

Extensions of a-quasi-*-IFP and a-*-
reflexive *-rings

In this section, recall that R be a *-ring and S
be a multiplicatively closed subset of R consist-
ing of nonzero central regular elements, then,
the localization of R to Sis S7IR=
{u™lalu € S,a € R}, and it also is a *-ring
with involution o defined as: (u™'a)’ =
uVa*=u""a* see for more details
(Aburawash & Abdulhafed, 2018b). A *-
endomorphism & on R can be extended to & on
S7IR, the mapping @:S R - S7IR is de-
fined by @ la)=a(@w Hala) see
[(Abdulhafed, 2019)]. Then, the following
proposition is obtained.

Proposition 16. 4 *-ring R is a-quasi-*-IFP if
and only if S™1R is @-quasi-*-IFP.

Proof. Assume that Sy =0=pgy° with
B =u"ta and y = v~1h, where a,b € R and
u,v € S. Hence,

By =utav b =u"lvlab = (vu)tab =0
and

By* =uta(w)b* =u'(v)ab’
= (v*u)"tab* =0,

since S exists in the center of R, and so
ab = ab* = 0. By hypothesis acb = 0 for all
¢ € R, which implies

apEvy)=
o (u'law'lcv'lb) =« ((un)'l)a(acb) =0

for every ¢ =w™lc € STIR. The converse
is clear.

Proposition 17. 4 *-ring R is a -*-reflexive if
and only if ST1R is @-*-reflexive.

Proof. It is enough to show that S™1R is @ -*-
reflexive if R is a *-reflexive. Let R be an a-
*-reflexive and &y =0 = pL&y° with
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f=ula, E=wlc and y =v"1bh, where
a,b,c € Rand u,v,w € §S. Hence,

1

pE&y =utaw lcv b = ulw v tach =

(vwu)~tach = 0,
and

B¢y =utaw e (w*) bt =
u tw t(w")tach* = (v*wu) tach* = 0.

Since S exists in the central of R so
acb =0 = acb”.

By hypothesis a(b)a(c)a(a) = 0, which im-
plies that:

aa)ap) = awb)awc)@au'a)
=a(w Haw Haw Ha®)a(c)ala)
= a((uww) Ha)a(c)ala) =0

It is important here to discuss the *-ring of
Laurent polynomials in x, with coefficients in a
*-ring R, consists of all formal sums

fl) = i a;x’,
i=k

with obvious addition and multiplication,
where a; € R and k, m are (possibly negative)
integers, and with involution * defined as:

m

f*(x) = Z a;x'.

i=k

It is denoted as usual by R[x; x71]. If a is *-
endomorphism of a *-ring R, then, the map
a@: R[x] = R[x] is defined by

> ata)x

for all i, is *-endomorphism of the polynomial
*-ring R[x], and it is clear this map extends a.

m

@ (Z aixi>

i=k

Corollary 15. Let R be a *-ring, then, R[x] is
a-quasi-*-IFP if and only if R[x;x" 1] is &-
quasi-*-IFP.

Proof. It is sufficient to show the necessity.
Clearly S ={1,x,x%,...} is a multiplicatively
closed subset of R[x]. Since R[x;x7!]
S71R[x], it follows that R[x; x 1] is @-quasi-*-
IFP by Proposition 16.

Corollary 16. Let’s suppose R is a *-ring, then
R[x] is o -*-reflexive if and only if R[x;x™1]
is @-*-reflexive.

Proof. The important thing is to prove the ne-
cessity, since R[x] is a *-subring of R[x;x~1].
Clearly, S = {1,x,x2,..} is a multiplicatively
closed subset of R[x]. Since R[x;x7 1] =
S7IR[x], it follows that R[x;x~1] is @&-*-
reflexive by Proposition 17.

A *-ring R is *-Armendariz (resp., quasi-*-
Armendariz), when the polynomials

f(x) = Z aixi
i=0
and
gx) = z bix’ € R[x],
j=0
Satisfy
f)g(x) = f(x)g™(x) =0

(resp.,  f(OR[x]g(x) = f()R[x]g"(x) =

0), then, a;b; = 0 (resp., a;Rb; = 0) for all i,j
(consequently a;b; = 0 (resp.; a;Rb; = 0)).

Theorem 1. Let R be a *-Armendariz *-ring.
Then the following statements are equivalent

1. R is a-quasi-*-IFP.
2. R[x] is &-quasi-*-IFP.
3. R[x;x7 1) is G-quasi-*-IFP.
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Proof. It is enough to prove (1) to obtain (2).
Let’s consider

m n

fG) = ) aix,g() = ) byl € Rlx
. £,

i=0

Therefore,

fOIR[x]g(x) = 0= fOOIR[x]g"(x).
By hypothesis,

aibj =0= al-b]’-k

and

a(a;)a(r)a(b;) €R foralli,jandr € R.
Hence, a(f(x))R[x]a(g(x)) =0, and hence
that R[x] is a-quasi-*-1FP.

Theorem 2. Let us assume R is a quasi-*-
Armendariz *-ring, then the following state-
ments are equivalent.

1. R is a-*reflexive.
2. R[x] is &-*-reflexive.
3. R[x;x7 1] is @-*reflexive.

Proof. It suffices to show that (1) = (2). As-

sume
m n
f&) = z aix',g(x) = » bjx’ € R[x]
i=0 =0

leads us to obtain:

fIR[x]g(x) = 0 = fF()R[x]g" (x).

Since R is quasi-*-Armendariz, it is given
a;Rb; = 0 for alli,j. But, R is a-*-reflexive,
SO a(bj)Ra(ai) = 0 forall i, j.

Consequently a(g(x))R[x]a(f(x)) = 0, and
hence R[x] is @-*-reflexive.

The following corollaries are obtained by The-
orems 1 and 2.

Corollary 17. Let R be an Armendariz *-ring.
Then, the following relations are equivalent:

1. R is a-quasi-*-IFP.

2. R[x] is &-quasi-*-IFP.

3. R[x;x71)is @-quasi-*-IFP.
Corollary 18. Let R be a quasi-Armendariz *-
ring. Then, the following relations are equiva-
lent:

1. R is a-*- reflexive.
2. R[x] is &-*-reflexive.
3. R[x;x" 1] is &-*-reflexive.

It is known that, the Dorroh extension
D(R,Z) ={(r,n):r € R,n€Z} of a *-ring
R is a ring with componentwise addition and
multiplication:

(r, 1) (12, n3) = (12 + nyry + N1y, nyny).

The involution of R can be extended naturally
to D(R,Z) as (r,n)*=(@"n) (see
(Aburawash, 1997)). A *-endomorphism a on
Rcan be extended to & on D(R,Z)by
a@(r,n) = (a(r),n) (see (Baser et al., 2009)).

Proposition 18. A *-ring R is a-quasi-*-IFP
with a(1) = 1, if and only if its Dorroh exten-
sion D(R, Z) is @-quasi-*-1FP.

Proof. Let (r,ny),(r,n,) €D  with
(r, n)(ry,nz) = 0 = (1, ny) (13, 12).

Then,

"+ +nrn +nn, =0=nr, +
nr, +n,r + nyn,.

Since Z is a *-domain, we have ny =0 or
le = 0. If Tll S 0 then 0 = T17‘2 + TlZT'l S
r(p+ny,) and 0=mnrry, +n,r, =r(ry +
n,). Since R is a-quasi-*-IFP with a(1) =1,
0 = 07(7'1)07(7')07((7'2 + nz)) = a(r)a(r)
a(ry) + a(r)a(r)n, and
0 = a(r)ama((r; +ny)) =
a(r)a(r)a(r,”) + a(r))a(r)n, for all r €
R. This yields
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0 = a((r,n))a((r,n))a((rz,nz)) =
(a(r)a(r) + na((ry)) alry) +

(a(ry)a(r) + na(ry))n, for any (r,n) €D,
and hence a&((r,nq))Da((r;,ny)) = 0.
Now, let n, = 0. Then, (r; +n,)r, =0, and
s0 0 = (a(ry) + ny)Ra(r,) = 0. It is similar to
obtain d((rl,nl))Dd((rz,nz)) = 0, and thus,
the Dorroh extension D (R, Z) is &-quasi-*-1FP.

Proposition 19. 4 *ring R is a-*-reflexive
with a(1) = 1, if and only if its Dorroh exten-
sion D(R,Z) is &-*-reflexive.

Proof. Suppose that (ry,n,), (r,,n,) € D with

(ry,n)(r,n)(ry,n,) =0 =
(ry,ny)(r,n)(ry,n,). For any (r,n) € D. The
claim here is

d((rz,nz))&((r, n))o?((rl,nl)) = 0.

In fact, we have

(ryrry + nyrry + iy, + nunry, + Ny +
nn,r + nnyr,nnny) = 0 = (rrry + nyrry

+nrry, + nnry +nyrr +nyn,r +
nn,ry, Nnn,), "Iy + nyrr, +nnr, +
nnry, + nyryr + nynyr +nnyry =0

* * * *
=r4qIT, + nqI1, + Ny, + nynr, + Nyryr
+nn,r + nnyn

and
nnn, =0,

since Z is a *-domainn; = 0,n =0 orn, = 0.
If ny=0, then, mrr,+nnr, +n,nr+
nn,r; = 0, and so we have:

0 =nrrry, + nrnyry, + nyrr + nnyry = ry(r,n)
(r,n3) = (a(r2),n2)(a(r), M)a(r) = a(ry)

a(r)a(r) + a(r)na(r) + npa(ra(rn) +
n,na(ry), since R is @&-*-reflexive *-ring.
This shows that

'b'(((rz,nz))d((r, n))&((rpnﬂ) =
a(r)a(r)a(r) + a(r)na(r) +

nya(r) a(ry) + nyna(ry) =
a(rp)a(ma(r) + nya(r)a(r) +
na(ry)a(ry) + nyna(ry) + nya(ry)a(r) +
nyny,a(r) + nyna(r) =0, nynn, = 0.

If n, =0, then,

nrry + nrr, + nnry, + nynr,
= (r,ny)(r,n)ry = a(ry)

d((r, n))d((rl,nl))
= a(r)a(r)a(r)
+ a(r)a(r)n, + a(r)na(r)
+ a(ry)nn, =

a(r)a(r)a(r) + npa(r)a(r)
+ na(ry)a(ry) + nyna(ry)
+nya(ry))a(r) + nyn,a(r)
+ nyna(ry) = 0.

Therefore, we get 0 = 07((7‘2, nz))&((r, n))
d((rl, nl)), then, D is @-*-reflexive.

Conversely, assume that D is @-*-reflexive. Let
a(r;)Ra(r;) = 0 = a(r))Ra(ry), for r,ry €
R.  Then, a(r)(a(r) + n))a(r) =0 =
a(ry)(a(r) + n)a(ry) for any(r,n) € D, this
implies:

0= d((rl, O))o?((r, n))o?((rz, O)) =
d((rl,O))o”z((r, n))o?((rz*, 0)),for any (r,n) €
D. Since D is a@-*-reflexive, we have 0 =
d((rz,O))d((r, n))o?((rl,O)) =
@((r3,0))a((r,n))a((r, 0),

and hence, a(ry)(a(r) + n)a(r;) =0 =
a(ry)(a(r) + n)a(r,), thus,
a(ry)Ra(r) = 0 = a(ry)Ra(ry).

Recall that, a ring R is called right Ore, if it is
given a,b € R with b regular, there exist
a,,b; € R with b; regular such that: ab; =
ba,. Left Ore is defined similarly, and R is Ore
ring, whether it is both right and left Ore. For
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*-rings, right Ore implies left Ore and vice ver-
sa. It is a known fact that R is Ore if and only if
its classical quotient ring Q of R exists and for
*_rings, * can be extended to Q by (a"1h)* =
b*(a*)"t. A ‘*-automorphism « on Q by
@(ab 1) = a(a)a(b)™! (see [(Martindale &
3rd, 1969), Lemma 4], (Hong et al., 2006)).
The following theorem is generalized by
[(Aburawash & Abdulhafed, 2018a), Theorem
5].

Theorem 3. Let R be an Ore *-ring, o the *-
automorphism of R, and Q be its classical quo-
tient *-ring, then, R is o-*-reflexive if and only
if Q is a-*-reflexive.

Proof. Let R be an a-*-reflexive *-ring and
pyE =0=pyé* with B =au™l, y=bv?
and &=cw™1€Q. By hypothesis for
a,b,c,d,u,v,w €R, there exist by,u; €ER
with u, regular

ub; = buy,u™bh = bjust, (1)

then, 0 = By¢ = autbvtcw™?! = abjuj?
v-iew™! . Also, for c,v € R there exist
€1, V1, €1 € R with v, regular such that:

ve, = cvy, v ic = gt
and
* % -1 % _ *.,—1
Ve, = v, v ct = cvg o, (2)

so, we have 0= py& =abyuilc;viiwlt
For c,u € R, there exist cj, c,, 5, U, € R with
u, regular such that:

_ -1, _ -1
UiCy = CqlUy, U] €1 = CoU5 3)

ko % -1 % __ . %,,—1 4
U1C; = CilUy, Uy € = CUy -, (4)
and hence, it is obtained

0 = By¢ = abycouy v tw!

= abyc,(Wviuy) ™t
which implies ab;c, = 0. Similarly,

0 =yB&¢ = au thv I (cw™1)* = authv?

w*) Ic* = abjuy vt (wH)ic* =
ab; (w*vu;)"1c*,

where g = w*vu; €R. For ¢,g € R, there
exist g1,¢; € R with g, regular such that:

* Lk -1 % _ % -—1
gc; =€ g1, g € =Cg91 -

Thus,
0 = yBE" = abyc39;,

for which implies that ab;c; =0, then,
abic, = 0 = ab,c;. In the following computa-
tions, the condition that R is a-*-reflexive can
be used freely. Since ab;c, =0, we have
c;bia =0, and so cy,bjau = 0. This implies
that:

aub;c, = abu,c, = 0 by (1), then, u,c,ba =
0, and so cjuy,ba =0 by (3). This leads to
abciu, =0, and abc; = 0. Hence, ¢c;ba = 0,
and thus vci;ba = 0, so abcv; = 0. Hence, we
get abc =0, and so cbha =0. Similarly,
abic; =0, we have c;b;a=0, and so
c;biau = 0. This implies that aub;c; =
abu,c; =0 by (1), then, u;c;ba =0, and so
ciuzba = 0 by (4). This shows that abciu, =
0 and abcy = 0. Hence, c;ba = 0, and thus
vciba = 0, so abc*v; = 0 by (2). Hence, we
get abc® =0 and so c*ab=0. On the other
hand, éyp = @(cw Ha(bv Ha(au™!) and
similarly there exist as, a4, b3, w3, v3,v, € R
with ws, v3, v, regular such that:

a(w)a(bs) = a(b)a(ws),  a(w Ha(b) =
a(bs)a(wsh),
a(a(as) = a(@a(vs),  a@ Hala) =

a(az)a(vsh)

and

a(w)a(a,) = a(az)a(vy), alwsHalas) =

a(aga(, ).

Then, we get

§yB = a()a(bs)a(ws Ha(az)a(vs Ha™)
= a(c)a(bs) a(a)as Da(vsHaw™) =

© 2021 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.

ISSN: online 2617-2186 print 2617-2178



Al-Mukhtar Journal of Sciences 36 (1): 42-56, 2021

a(cb3a4)a((uv3v4)'1). Since a(cha) = 0, we
obtain a(w;)a(cha) = 0, and so

a(a)a(b)a(ws)a(c) =0 =
a(a)a(w)a(bz)a(c).

This implies that:
a(c)a(bs)a(a)a(w) = 0,

and thus
a(c)a(bs)a(a) = 0.
Then,
a(c)a(bz)a(a)a(vs) =

a(c)a(bs)a(v)a(as) = 0 and so,
a(v)a(az)a(bs)a(c) = 0.

Hence, a(asbsc) = 0 = a(cbsas) and then

a(c)a(bs)alaz)a(v,) =
a(c)a(bz)a(w) ala,) =
a(way)a(bs)a(c) = 0.

It follows that a(a,)a(bs)a(c) = 0 and we get
a(c)a(by)a(as) = 0. Therefore,

&yp = a(ew hvtau™?t) =
a(chza,)(uvsv,)~t = 0.Then
reflexive.

Q ar

Finally, according to the study (Abdulhafed,
2019)], [(Aburawash & Abdulhafed, 2018a),
Theorem 5], and Theorem 3, the following
corollaries are deduced.

Corollary 19. If R is reflexive *-ring, then Q is
a-*-reflexive.

Corollary 20. /1 Q is reflexive *-ring, then R is
a-*-reflexive.

Corollary 21. If R is a-*-reversible *-ring,
then Q is @-*-reflexive.

Corollary 22. If Q is &-*-reversible *-ring,
then R is a-*-reflexive.

Conclusion And Future Directions

All the results of the paper are summarized by
using a diagram explaining the relations among

the corresponding classes.It is possible to fol-
low implications in the class of rings with invo-
lution.

o-"-[IP &=="[IP =—==1IP

0- 11"1d<Zr l quasi-*-[FP == a-quasi-*-IFP
\ rl"](l<:)'lt(11CL(:}' -reversihle = o-"-reversible
\ rigid e=—==* rL lucul=>- teflexive—= 0" r(ﬂmw

//
._ r{/
emiprime

Most importantly, the study has explored the
following several new results.

1. Every a-rigid is a-*-reflexive.
2. Every *-rigid is a-*-reflexive.
3. Every a-*-reversible is a-*-reflexive.
4. Each a-*-reversible is a-quasi-*-1FP.

Finally, these results pave the way for further
research into some classes of *-rings which
generalize that of a-*-reflexive *-rings and in-
vestigate their properties.

Based on the above results, we strongly rec-
ommend studying the *-rings independently by
using both morphisms and structures presiding
its involution. However, it is good to join the
involutive structures with their non-involutive
counterparts. Future work will be concerned
with deeper analysis of *-rings, new properties
of the created structures and new several struc-
tures in the involutive sense. The following
questions should be an inception for new
works:

1. Studying the extensions over *-Baer *-rings
as polynomials, skew polynomials,
and matrices is very important. What are the

hypotheses needed to do that?
2. How are the extensions of a -*-reflexive
possible?

3. Is there a possibility to get a definition for
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central a-*-reflexive *-rings analogously to
central *-reflexive rings?
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