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Abstract: This paper studies the concept of the 𝛼-quasi-*-IFP (resp., 𝛼 -*-reflexive) *-rings, as a 
generalization of the quasi-*-IFP (resp., *-reflexive) *-rings and every quasi-*-IFP (resp., *-
reflexive) *-ring is 𝛼 -quasi-*-IFP (resp., 𝛼-*-reflexive). This paper also discusses the sufficient 
condition for the quasi-*-IFP (resp., *-reflexive) *-ring in order to be 𝛼-quasi-*-IFP (resp., 𝛼-*- re-
flexive). Finally, this study investigates the 𝛼-quasi-*-IFP (resp., 𝛼-*-reflexivity) by using some 
types of the polynomial rings. 
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INTRODUCTION 

Throughout this paper, 𝑅 denotes an associa-
tive *-ring with unity and 𝛼  denotes a nonzero 
nonidentity endomorphism of a given *-ring, 
unless specified otherwise. IFP stands for “in-
sertion-of-factors property”, 𝑅 is semicommu-
tative or has IFP if the right annihilator 𝑟(𝑎) =
{𝑥 ∈ 𝑅|𝑎𝑥 = 0} of every element  𝑎 ∈ 𝑅 is a 
two-sided ideal. A *-ring 𝑅 is said to have IFP 
when all 𝑎𝑏 ∈ 𝑅,𝑎𝑏 = 0 which implies that 
𝑎𝑅𝑏 = 0 by (Kim & Lee, 2003).  In both stud-
ies (Başer & Kwak, 2010) and (Başer et al., 
2008) discussed an endomorphism 𝛼 of a ring 
𝑅, the endomorphism 𝛼 is called semicommu-
tative if 𝑎𝑏 = 0 implies 𝑎𝑅𝛼(𝑏) = 0 for 𝑎 ∈
𝑅. Also, a ring 𝑅 is called 𝛼- semicommutative, 
if there exists a semicommutative endomor-
phism 𝛼 of 𝑅.  

Another study (Zhao & Zhu, 2012) shows that, 
an endomorphism 𝛼 of a ring 𝑅 is called reflex-
ive whenever 𝑎𝑅𝑏 = 0 for 𝑎, 𝑏 ∈ 𝑅, 𝑏𝑅𝛼(𝑎) =
0. A ring 𝑅 is called 𝛼-reflexive if there exists 
a reflexive endomorphism 𝛼 of 𝑅.  
A *-ring 𝑅 is said to have *-IFP if all 𝑎, 𝑏 ∈
𝑅,𝑎𝑏 = 0 implies 𝑎𝑅𝑏∗ = 0.  For more details 

see (Aburawash & Saad, 2014). By  
(Aburawash & Saad, 2019) 𝑅 has quasi-*-IFP 
if all 𝑎, 𝑏 ∈ 𝑅,𝑎𝑏 = 𝑎𝑏∗ = 0 implies 𝑎𝑅𝑏 = 0, 
a *-ring 𝑅 is called *-reversible (resp., *-
reflexive) if for all 𝑎, 𝑏 ∈ 𝑅,𝑎𝑏 = 𝑎𝑏∗ = 0  
(resp., 𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ = 0) implies 𝑏𝑎 = 0 
(resp., 𝑏𝑅𝑎 = 0).  

According to (Abdulhafed, 2019), a *-ring 𝑅 is 
said to be *-rigid if for 𝑎, 𝑏 ∈ 𝑅,𝑎𝑏2 = 𝑎𝑏𝑏∗ =
0 implies 𝑎𝑏 = 0, an 𝛼 be a *-endomorphism 
of 𝑅. 𝛼 is called a *-rigid *-endomorphism if 
𝑎𝛼(𝑎) = 𝑎𝛼(𝑎∗) = 0 implies 𝑎 = 0 for all 
𝑎 ∈ 𝑅. A *-ring 𝑅 is called 𝛼-*-rigid if there 
exists a *-rigid *-endomorphism 𝛼 of 𝑅 and a 
*-endomorphism 𝛼 of a *-ring 𝑅 is called *-
reversible if whenever 𝑎𝑏 = 𝑎𝑏∗ = 0, then 
𝛼(𝑏)𝛼(𝑎) = 0, for 𝑎, 𝑏 ∈ 𝑅 (also, 
𝛼(𝑏∗)𝛼(𝑎) = 0). A *-ring 𝑅 is called 𝛼-*-
reversible if there exists a *-endomorphism 𝛼 
on 𝑅. A *-rigid *-rings are equivalent to *-
reduced *-rings. 

In view of the studies mentioned above, this 
paper introduces the class of 𝛼-quasi-*-IFP 
(resp., 𝛼-*-reflexive) *-rings, which is the *-
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version (and also a generalization) of the quasi-
*-IFP (resp., *-reflexive) *-rings.      

Moreover, some properties and results of these 
classes of *-rings are investigated. The class of 
𝛼-*-reflexive *-rings is introduced as a gener-
alization of *-reflexive and *-reduced *-rings, 
since, by definition, *-reflexive *-rings are 𝛼-
*-reflexive *-rings and 𝛼-*-reversible is 𝛼-*-
reflexive. 

Also, other relative results are given. Here, fi-
nally, we conclude the results of the paper by 
explaining the diagram and the relations among 
the corresponding classes. 

𝛼-*-IFP rings 

In this section, 𝛼-*-IFP *-rings are introduced 
as a generalization of *-IFP *-rings. 

Definition 1. A *-endomorphism 𝛼 of a *-ring 
𝑅 is called *-IFP if whenever 𝑎𝑏 = 0, then 
𝛼(𝑎𝑟𝑏∗) = 0  for all 𝑎, 𝑏, 𝑟 ∈ 𝑅. A *-ring 𝑅 is 
called 𝛼-*-IFP if there exists a *-
endomorphism 𝛼 on R. 

It is clear that a ring 𝑅 is *-IFP if 𝑅 is 𝐼𝑅-*-
IFP, where 𝐼𝑅 is the identity *-endomorphism 
of 𝑅. It is easy to see that every *-subring S 
with 𝛼(𝑆) ⊆ 𝑆 of an 𝛼-*-IFP *-ring is also 𝛼 -
*-IFP. 

Obviously, in general, the reverse implication 
in the above definition does not hold by the fol-
lowing example which also shows that there 
exists *-endomorphism 𝛼 of 𝛼 -*-IFP *-ring 𝑅 
such that 𝑅 is not 𝛼 -IFP. 

Example 1. Assume both 𝔽 to be a field, the *-
ring 𝑅 = 𝔽⨁𝔽 with exchange involution 
(𝑎, 𝑏)∗ = (𝑎∗, 𝑏∗) and *-endomorphism 
𝛼:𝑅 → 𝑅 is given by 𝛼�(𝑎, 𝑏)� = (𝑏,𝑎) for all 
𝑎, 𝑏 ∈ 𝔽. Since Since A=(1,0), B=(0,1),A =
(1,0 ), B = (0,1)𝑅 clearly 𝛼-*-IFP, but it 
does not have 𝛼-IFP. 

Proposition 1. Let R be α- *-IFP *-ring and α 
is *-monomorphism on R, then R *-IFP. 

𝜶-quasi-*-IFP rings 

In this part of the paper the focus is on the 𝛼-
quasi-*-IFP *-rings and how to introduce a 
generalization for quasi-*-IFP *-rings. 

Definition 2.  A *-endomorphism 𝛼 of a *-ring 
𝑅 is called quasi-*-IFP, when 𝑎𝑏 = 0 = 𝑎𝑏∗, 
then 𝛼(𝑎𝑟𝑏) = 0, for all 𝑎, 𝑏, 𝑟 ∈ 𝑅 (conse-
quently 𝛼(𝑎𝑟𝑏∗) = 0). A *-ring 𝑅 is called 𝛼-
quasi-*-IFP if there exists a *-endomorphism 
𝛼 on 𝑅. 

It is clear that it is needed to exclude the identi-
ty *-endomorphism 𝐼𝑅, because the *-ring 𝑅 is 
𝐼𝑅-quasi-*-IFP if and only if 𝑅 is quasi-*-IFP. 
In general, 𝛼-quasi-*IFP *-ring 𝑅 is quasi-*-
IFP if 𝛼 is a *-monomorphism on 𝑅. 

Proposition 2. Let R be α-quasi-*-IFP *-ring 
and α is *-monomorphism on R, then R quasi-
*-IFP. 

Proposition 3. Let R be α is *-monomorphism 
a *-ring. If R is α-quasi-*-IFP and it has *-
IFP, then R is IFP. 

Proof. It is obvious, since 𝑎𝑏 = 0, implies 
𝑎𝑅𝑏∗ = 0, by the *-IFP property and 𝑅 𝛼 -
quasi-*-IFP, we have 𝛼(𝑎𝑟𝑏) = 0, for all 
𝑎, 𝑏, 𝑟 ∈ 𝑅. Hence, 𝑎𝑅𝑏 = 0 since 𝛼 is *-
monomorphism. Thus 𝑅 is IFP. 

It is clear that, a ring 𝑅 is quasi-*-IFP if 𝑅is 𝐼𝑅-
quasi-*-IFP, where 𝐼𝑅 is the identity *-
endomorphism of 𝑅. It is easy to note that eve-
ry *-subring 𝑆 with 𝛼(𝑆) ⊆ 𝑆 of an 𝛼-quasi-*-
IFP *-ring is also 𝛼-quasi-*-IFP. 

Notice that, in general, the reverse implication 
in the above definition does not hold by the fol-
lowing example, which shows also that, there 
exists *-endomorphism 𝛼 of 𝛼-quasi-*-IFP *-
ring 𝑅 such that 𝑅 is not 𝛼-IFP. 
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Example 2. The *-ring 𝑅 = ℤ2⨁ℤ2, with the 
changeless involution * defined as (𝑎, 𝑏)∗ =
(𝑎∗, 𝑏∗) and *-automorphism 𝛼:𝑅 → 𝑅 given 
by 𝛼�(𝑎, 𝑏)� = (𝑏,𝑎) is not 𝛼-IFP but, it is 
IFP, since the nonzero element 𝐴(0,1),𝐵 =
(1,0) satisfies that 𝐴𝐵 = 𝐴𝐵∗ = 0, while 
𝛼(𝐴)𝑅𝐵 ≠ 0  and also 𝐴𝑅𝛼(𝐵) ≠ 0, 𝐴𝑅𝐵 =
0. Moreover, 𝑅 is 𝛼-quasi-*-IFP. 

Proposition 4. Let R be an α-*-reversible *-
ring, then R is α-quasi-*-IFP. 

The converse to Proposition 4 is not true ac-
cording on the following example: 

Example 3. The *-ring 𝑅 = �𝔽 𝔽
0 𝔽� over a 

field 𝔽, with the adjoint involution * is 𝛼-
quasi-*-IFP. Moreover, 𝑅 with the *-
endomorphism 𝛼:𝑅 → 𝑅 defined by  

𝛼 ��𝑎 𝑏
0 𝑐�� = �𝑎 −𝑏

0 𝑐 �, is not 𝛼-*-reversible 

by (Abdulhafed, 2019). The following example 
declares that, 𝑇4(𝑅) is not an 𝛼�-quasi-*-IFP *-
ring, even if 𝑅 is an 𝛼-rigid *-ring. Since *-
endomorphism 𝛼 of a *-ring 𝑅 is also extended 
to the *-endomorphism 𝛼� of 𝑇4(𝑅) defined by 
𝛼� ��𝑎𝑖𝑗�� = (𝛼(𝑎𝑖𝑗)). 

Example 4. Consider 𝑅 be a commutative 𝛼-
rigid *-ring. Then, the *-ring 𝑇4(𝑅) is not 𝛼�-
quasi-*-IFP, since the matrices 

𝐴 = �

0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

�,  

𝐵 = �

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

� ∈ 𝑇4(𝑅), 

satisfy 𝐴𝐵 = 𝐴𝐵∗ = 0 while, 
𝛼�(𝐴)𝛼�(𝐶)𝛼�(𝐵) ≠ 0, while, 
𝛼�(𝐴)𝛼�(𝐶)𝛼�(𝐵) ≠ 0 for  

𝐶 = �

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

� ∈ 𝑇4(𝑅), 

where 𝛼(𝑒) = 𝑒, by (Abdulhafed, 2019). Thus 
𝛼�(𝐴)𝛼�(𝑇4(𝑅))𝛼�(𝐵) ≠ 0 and so 𝑇4(𝑅)is not 𝛼�-
quasi-*-IFP. Similarly, it can be proved that 
𝑇𝑛(𝑅) is not 𝛼�-quasi-*-IFP for 𝑛 ≥ 5. 

Furthermore, the class of the α-quasi-*-IFP *-
rings is closed under the finite direct sums 
(with changeless involution). In addition to as-
sume R be a *-ring. Then, both 𝑒𝑅 and 
(1 − 𝑒)𝑅 are α-quasi-*-IFP for some projec-
tion 𝑒 in 𝑅 with 𝛼(𝑒) = 𝑒, if and only if 𝑅 is α-
quasi-*-IFP. 

𝜶-reflexive rings with involution 

In this section, 𝛼-*-reflexive *-rings are intro-
duced as a generalization for *-reflexive and *-
rigid *-rings. 

Definition 3. A *-endomorphism 𝛼 of a *-ring 
𝑅 is called *-reflexive when 𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ = 0, 
then, 𝛼(𝑏𝑟𝑎) = 0, for all 𝑎, 𝑏, 𝑟 ∈ 𝑅 (conse-
quently 𝛼(𝑏∗𝑟𝑎) = 0). A *-ring 𝑅 is called 𝛼-
*-reflexive, if there exists a *-endomorphism 𝛼 
on 𝑅.   

Every *-reflexive *-ring is clearly 𝛼-*-
reflexive, but, on the opposite side it is not true 
as shown by the following example. 

Example 5. The *-ring 𝑅 = �ℤ ℤ
0 ℤ�, with the 

adjoint involution * and *-endomorphism 
𝛼:𝑅 → 𝑅 is defined by 

𝛼 ��𝑎 𝑏
0 𝑐�� = �𝑎 0

0 𝑐� 

is 𝛼-*-reflexive, since if the matrices 

𝐴 = �𝑎1 𝑏1
0 𝑐1

�, 𝐵 = �𝑎2 𝑏2
0 𝑐2

� ∈ 𝑅, 

satisfy 𝐴𝑅𝐵 = 𝐴𝑅𝐵∗ = 0, then, we get the 
equations: 𝑎1𝑎𝑎2 = 𝑎1𝑎𝑐2 = 0,𝑎1𝑎𝑏2 +



Al-Mukhtar Journal of Sciences 36 (1): 42-56, 2021 

© 2021 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license. 
ISSN:  online 2617-2186           print 2617-2178 

45 

𝑎1𝑏𝑐2 + 𝑏1𝑐𝑐2 = −𝑎1𝑎𝑏2 + 𝑎1𝑏𝑎2 + 𝑏1𝑐𝑎2 =
0 and 𝑐1𝑐𝑐2 = 𝑐1𝑐𝑎2 = 0, which implies that: 

𝛼(𝐵𝑟𝐴) = �𝑎2𝑎𝑎1 0
0 𝑐2𝑐𝑐1

� = 0. 

Moreover, 𝑅 is not *-reflexive, since  

𝐵𝑅𝐴 = �0 𝑎2𝑏𝑐1 + 𝑏2𝑐𝑐1
0 0

� ≠ 0. 

Next, here it is also deduced that, it excluded 
the identity *-endomorphism 𝐼𝑅, because the *-
ring 𝑅 is 𝐼𝑅-*-reflexive if and only if 𝑅 is *-
reflexive. In general, 𝛼-*-reflexive *-ring R is 
*-reflexive if 𝛼 is a *-monomorphism on 𝑅. 

Proposition 5. Let R be an α-*-reflexive *-ring 
and α is *-monomorphism on R, then R is *-
reflexive.  It is clearly visible that, there is no 
connection between either 𝛼- reflexive or 𝛼-*-
rigid and 𝛼-*- reflexive *-rings. According to 
the example 5, there exists an 𝛼-*-reflexive *-
ring 𝑅 = �ℤ ℤ

0 ℤ� which is not 𝛼- reflexive. 
Since 

𝐵𝑅𝛼(𝐴) = �𝑎2𝑎𝑎1 𝑎2𝑎𝑏1 + 𝑎2𝑏𝑐1
0 𝑐2𝑐𝑐1

� ≠ 0, 

 and 

𝐵𝑅𝛼(𝐴) = �𝑎2𝑎𝑎1 𝑎2𝑏𝑐1 + 𝑎2𝑐𝑐1
0 𝑐2𝑐𝑐1

� ≠ 0. 

Example 6. Consider R = ℤ8 ⊕ ℤ8 with usual 
addition and multiplication with exchange in-
volution (𝑎, 𝑏)∗ = (𝑎∗, 𝑏∗),  and let α ∶  R →
 R be an *-endomorphism is defined by 
𝛼((𝑎, 𝑏))  =  (𝑏, 𝑎). For 𝑎 = (4, 2), 𝑏(2, 0) ∈
ℤ8 ⊕ ℤ8, we get 𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ =  0. 

 However, 𝑏𝛼(𝑎) = (4, 0) ≠ 0 and 𝛼(𝑏)𝑎 =
(0, 4) ≠ 0, entailing neither 𝑏𝑅𝛼(𝑎) = 0 and 
nor 𝛼(𝑏)𝑅𝑎 = 0. Hence, 𝑅 is neither right nor 
left 𝛼- reflexive, but, it is 𝛼-*-reflexive.  

Proposition 6. Let R be a *-reflexive *-ring. 
Then the following are equivalent. 

1. R is α-*- reflexive. 
2. If arb = 0 = arb∗ for all a, b, r ∈ R, then 

α(arb) = α(arb∗) = 0 . 

Proof. 1 ⇒ 2. Let 𝑎𝑟𝑏 = 𝑎𝑟𝑏∗ = 0, where 
𝑎, 𝑏, 𝑟 ∈ 𝑅, then 𝛼(𝑎𝑟𝑏) = 𝛼(𝑎𝑟𝑏∗) = 0. 
Hence, 𝛼(𝑏)𝛼(𝑟)𝛼(𝑎) = 0 = 𝛼(𝑏∗)𝛼(𝑟)𝛼(𝑎) 
for all 𝑟 ∈ 𝑅, since 𝑅 is *-reflexive, then, we 
get that 𝛼(𝑎)𝛼(𝑟)𝛼(𝑏) = 0 = 𝛼(𝑎)𝛼(𝑟)𝛼(𝑏∗) 
which implies 𝛼(𝑎𝑅𝑏) = 𝛼(𝑎𝑅𝑏∗). 

2 ⇒ 1. Let 𝑎𝑟𝑏 = 0 = 𝑎𝑟𝑏∗ for 𝑎, 𝑏, 𝑟 ∈ 𝑅 
which implies by 𝟐 that 𝛼(𝑎𝑟𝑏) = 𝛼(𝑎𝑟𝑏∗) =
0. Since 𝑅 is *- reflexive, then 𝛼(𝑏𝑅𝑎) = 0. 

Proposition 7. Let α be a *-monomorphism on 
a *-ring R. Then, R is an α-*- reflexive *-ring if 
and only α(a)α(r)α(b) = 0 = α(a)α(r)α(b∗) 
if implies bra = 0 = b∗ra for all a, b, r ∈ R.  

Proof. Let 𝛼(𝑎)𝛼(𝑟)𝛼(𝑏) = 0 =
𝛼(𝑎)𝛼(𝑟)𝛼(𝑏∗) for 𝑎, 𝑏, 𝑟 ∈ 𝑅, then  

𝛼�𝛼(𝑏)�𝛼�𝛼(𝑟)�𝛼�𝛼(𝑎)� = 𝛼2(𝑏𝑟𝑎) = 0 =
𝛼�𝛼(𝑏∗)�𝛼�𝛼(𝑟)�𝛼�𝛼(𝑎)� = 𝛼2(𝑏∗𝑟𝑎)Since, 
𝑅 is 𝛼-*-reflexive and 𝛼 is a *-monomorphism 
imply 𝑏𝑅𝑎 = 0 = 𝑏∗𝑅𝑎. 

 Conversely, let 𝑎𝑟𝑏 = 𝑎𝑟𝑏∗ = 0, where 
𝑎, 𝑏, 𝑟 ∈ 𝑅, then, 𝛼(𝑎𝑟𝑏) = 𝛼(𝑎)𝛼(𝑟)𝛼(𝑏) =
0 = 𝛼(𝑎)𝛼(𝑟)𝛼(𝑏∗) = 𝛼(𝑎𝑟𝑏∗) by hypothesis 
so 𝑏𝑅𝑎 = 0 = 𝑏∗𝑅𝑎. 

It is easily to show that the class of 𝛼-*- reflex-
ive *-rings is closed under finite direct sums 
(with changeless involution). 

Proposition 8. The class of α-*- reflexive *-
rings is closed under finite direct sums. 

The next step, an example is needed to explain 
that *-reflexivity is not closed under taking *-
subrings. The full matrix ring 𝕄𝑛(𝑅) over a *-
ring 𝑅 with adjoint involution and the *-
endomorphism 𝛼:𝕄𝑛(𝑅) → 𝕄𝑛(𝑅) is defined 
by 
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𝛼 ��𝑎 𝑏
𝑐 𝑑�� = � 𝑎 −𝑏

−𝑐 𝑑 �, 

It is not 𝛼-*-reflexive for 𝑛 ≥ 2, according to 
the following example: 

Example 7. The ring 𝑅 = 𝕄(ℤ2) is prime and 
*-reflexive. The upper triangular matrix ring 

𝑇2(𝑅) = �ℤ2 ℤ2
0 ℤ2

� over ℤ2 is a *-subring of 

𝑅. 𝑅 is clearly 𝛼-*-reflexive, but 𝑇2(𝑅) is not, 
since both matrices 𝐴 = �0 0

0 1� and 𝐵 =

�0 1
0 0�  of 𝑅  satisfy  

𝐴𝑅𝐵 = 𝐴𝑅𝐵∗ = 0, but 𝛼(𝐵)𝑅𝛼(𝐴) = 

�0 −1
0 0 � �1 −1

0 1 � �0 0
0 1� = �0 −1

0 0 � ≠ 0 

According to the study by [(Abdulhafed, 
2019)] every *-reduced equivalence *-rigid, 
[(Aburawash & Saad, 2016), Example 4.2 and 
Proposition 4.6 ] and [(Aburawash & Saad, 
2019), Example 7 and Corollary 3], we deduce 
the following important results. 

Corollary 1. Every *-rigid *-ring is 𝛼-*- re-
flexive. 

The opposite of the previous Corollary 1 is not 
true since, by Examples 5 it is obtained 𝛼-*-
reflexive and it is not *-reduced. 

Corollary 2. Every *-Baer *-ring is α-*- re-
flexive. 

Corollary 3. Every *-domain is α-*- reflexive. 

Corollary 4. Every *-ring with semiproper in-
volution is α-*- reflexive. 

Now, in contrast to the previous corollary, it is 
not necessary to be true as shown in the follow-
ing example. 

Example 8. From [(Aburawash & Saad, 2019), 
Example 9], if 𝔽 is a field, then the ring 
𝑅 = 𝔽⨁𝔽𝑂𝑃, with the exchange involution * is 

defined by (𝑎, 𝑏)∗ = (𝑏,𝑎) and the *-
endomorphism  𝛼 =∗  for all 𝑎, 𝑏 ∈ 𝑅, it is ob-
vious that an 𝛼 *-reflexive but, * is not semi-
proper. Indeed, the element 0 ≠ 𝐴 = (0,𝑎) for 
some nonzero element a of 𝔽 satisfy 𝐴𝑅𝐴∗ =
0. 

The following proposition and example show 
that the class of 𝛼-*-reflexive *-rings general-
izes strictly that of 𝛼-*-reversible *-rings. 

Proposition 9. Every 𝛼-*-reversible *-ring is 
𝛼-*- reflexive. 

Proof. Let 𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ = 0, then, 𝑎𝑏 =
𝑎𝑏∗ = 0 implies 𝑟𝑎𝑏 = 𝑟𝑎𝑏∗ = 0  for every 
𝑟 ∈ 𝑅. So that 𝛼(𝑏𝑟𝑎) = 𝛼(𝑏∗𝑟𝑎) = 0, from 
the 𝛼-*-reversibility of 𝑅. Thus 𝛼(𝑏𝑅𝑎) =
𝛼(𝑏∗𝑅𝑎) = 0, hence, 𝑅 is 𝛼-*- reflexive. 

The question that, when a 𝛼-*-reflexive *-ring 
is 𝛼-*-reversible is answered by the following 
proposition. 

Proposition 10. A *-ring 𝑅 is 𝛼-*-reversible if 
and only if 𝑅 has quasi-*-IFP and 𝛼-*- reflex-
ive. 

Proof. The necessity is clear to sufficiency, 
let’s consider 𝑎𝑏 = 𝑎𝑏∗ = 0, for some  
𝑎, 𝑏 ∈ 𝑅. Since 𝑅 has quasi-*-IFP, then, 
𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ = 0. The 𝛼-*-reflexivity of 𝑅 
implies 𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ = 0. Hence 𝛼(𝑏𝑎) =
𝛼(𝑏∗𝑎) = 0, and 𝑅 is 𝛼-*-reversible. By the 
Corollary 1, we can get the following result. 

Corollary 5. Every 𝛼-rigid *-ring is 𝛼-*- re-
flexive. 

The following example can show that the con-
verse of Corollary 5 is not true. 

Example 9. By looking to the study [(Başer et 
al.,2009), Example 2.7 (i)], the trivial extension 
*-ring 𝑇(ℤ4,ℤ4), with the adjoint involution * 
and the *-endomorphism 𝛼 =∗ is not semi-
prime (so not 𝛼-*-rigid), but it is 𝛼-*- reflex-
ive. 
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Proposition 11. Let’s consider α to be a *-
monomorphism on a *-ring R, the following 
statements are equivalent: 

i. 𝑅 is 𝛼-*- reflexive. 
ii. 𝑟∗(𝑎𝑅) = 𝑙∗(𝑅𝑎) for every element 𝑎 ∈ 𝑅. 

iii. For any two nonempty subsets 𝐴 and 𝐵 
of 𝑅, 𝐴𝑅𝐵 = 𝐴𝑅𝐵∗implies 𝛼(𝐵𝑅𝐴) = 0 
(consequently 𝛼(𝐵∗𝑅𝐴) = 0).   

Proof. (𝑖)  ⇒  (𝑖𝑖). Let 𝑥 ∈ 𝑟∗(𝑎𝑅), then, 
𝑎𝑅𝑥 = 𝑎𝑅𝑥∗ = 0. Since 𝑅 is 𝛼-*- reflexive, 
we have 𝛼(𝑥)𝛼(𝑅𝑎) = 𝛼(𝑥∗)𝛼(𝑅𝑎) = 0, but 
𝛼 is a *-monomorphism, so 𝑥𝑅𝑎 = 𝑥∗𝑅𝑎 = 0 , 
for every 𝑎 ∈ 𝑅. Hence, 𝑥𝑅𝑎 = 𝑥∗𝑅𝑎 = 0 im-
plies 𝑥 ∈ 𝑙∗(𝑅𝑎), and we get 𝑟∗(𝑎𝑅) ⊆ 𝑙∗(𝑅𝑎). 
Similarly, 𝑙∗(𝑅𝑎) ⊆ 𝑟∗(𝑎𝑅) and so 𝑟∗(𝑎𝑅) =
𝑙∗(𝑅𝑎) follows. 

(𝑖𝑖) ⇒ (𝑖𝑖𝑖). Let 𝐴𝑅𝐵 = 𝐴𝑅𝐵∗for some subsets 
𝐴 and 𝐵 of 𝑅. Then 𝐵 ⊆ 𝑟∗(𝐴𝑅) and so 
𝑎𝑅𝑏 = 𝑎𝑅𝑏∗ = 0 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 and 
hence 𝑏 ∈ 𝑟∗(𝑎𝑅) = 𝑙∗(𝑅𝑎) and 𝑏𝑅𝑎 =
𝑏∗𝑅𝑎 = 0. which implies 𝛼(𝐵𝑅𝐴) =
𝛼(𝐵∗𝑅𝐴) = 0. 

(𝑖𝑖𝑖) ⇒ (𝑖𝑣).  is obvious. 

From Proposition 11, we have the following 
corollary. 

Corollary 6. Let 𝛼 be a *-monomorphism of a 
*-ringR, then the following statements are 
equivalent: 

i. 𝑅 is *- reflexive. 
ii. 𝑅 is 𝛼-*- reflexive. 

iii. 𝑟∗(𝑎𝑅) = 𝑙∗(𝑅𝑎) for every element 𝑎 ∈ 𝑅. 
iv. For any two nonempty subsets 𝐴 and 𝐵 of 

𝑅, 𝐴𝑅𝐵 = 𝐴𝑅𝐵∗ = 0 implies 𝛼(𝐵𝑅𝐴) = 0 
(consequently 𝛼(𝐵∗𝑅𝐴) = 0).    

Again, a *-domain *-ring is *- reflexive 
[(Aburawash & Saad, 2019), Example 4], then, 
we have: 

Corollary 7. Every *-domain *-ring is 𝛼-*- re-
flexive. 

The converse of Corollary 7 is not true, since 
𝑇(ℤ4,ℤ4) is not a domain *-ring in the Exam-
ple 9 

Proposition 12. Let’s assume α be *-
endomorphisms of a *-ring R. If R is α-*- re-
flexive *-ring, then 𝑎𝑅𝑏 = 0 = 𝑎𝑅𝑏∗ for 
𝑎, 𝑏 ∈ 𝑅 implies 𝛼𝑘(𝑎)𝑅𝛼𝑘(𝑏) = 0 =
𝛼𝑘(𝑎)𝑅𝛼𝑘(𝑏∗) and 𝛼𝑘(𝑏)𝑅𝛼𝑘(𝑎) = 0 =
𝛼𝑘(𝑏∗)𝑅𝛼𝑘(𝑎)for all 𝑘 ≥ 1. 

For *-endomorphism 𝛼 and projection 𝑒 of 𝑎 *-
ring 𝑅 such 𝛼(𝑒) = 𝑒, that, we have *-
endomorphism 𝛼�: 𝑒𝑅𝑒 → 𝑒𝑅𝑒  is defined by 
𝛼�(𝑒𝑟𝑒) = 𝑒𝛼(𝑟)𝑒, one can show that *- reflex-
ive property is extended to the *-corner. 

Proposition 13. Let R be a α-*- reflexive *-
ring, then, the *-corner eRe for every projec-
tion e of R is also α-*- reflexive. 

Proof. Let 𝑅 be 𝛼-*-reflexive and  𝑎 = 𝑒𝑥𝑒, 
𝑏 = 𝑒𝑦𝑒 ∈ 𝑒𝑅𝑒 such that 𝑎(𝑒𝑅𝑒)𝑏 =
𝑎(𝑒𝑅𝑒)𝑏∗ = 0. Then 𝑒𝑥𝑒𝑅𝑒𝑦𝑒 = 𝑒𝑥𝑒𝑅𝑒𝑦∗𝑒 =
0 implies 
𝛼�(𝑒𝑦𝑒)𝑅𝛼�(𝑒𝑥𝑒) = 𝛼�(𝑒𝑦∗𝑒)𝑅𝛼�(𝑒𝑥𝑒) = 0, 
since 𝑅 is 𝛼-*- reflexive. Therefore 
𝛼(𝑏)(𝑒𝑅𝑒)𝛼(𝑎) = 𝛼(𝑏∗)(𝑒𝑅𝑒)𝛼(𝑎) = 0 and 
so 𝑒𝑅𝑒 is 𝛼-*- reflexive. 

Proposition 14. Let R be a *-ring with *-
endomorphism α such that α(e) = e for 
e2 = ee∗ = e ∈ R. If e is a central projection 
R, then, eR and (1 − e)R are α-*- reflexive if 
and only if  R is α-*- reflexive. 

Proof. It is enough to show the necessity by 
Proposition 8. Suppose that 𝑒𝑅 and (1 − 𝑒)𝑅 
are 𝛼-*-reflexive for a central projection 𝑒 ∈ 𝑅. 
Let 𝑎𝑅𝑏 = 0 = 𝑎𝑅𝑏∗ for 𝑎, 𝑏 ∈ 𝑅. Then,  

𝑒𝑎(𝑒𝑅)𝑒𝑏 = 0 = 𝑒𝑎(𝑒𝑅)𝑒𝑏∗, 

 and  

(1 − 𝑒)𝑎(1 − 𝑒)𝑅(1 − 𝑒)𝑏 =  0 
= (1 −  𝑒)𝑎(1 −  𝑒)𝑅(1
−  𝑒)𝑏∗. 
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By hypothesis, 

0 = 𝛼�(𝑒𝑏)𝑒𝑅𝛼�(𝑒𝑎) = 

𝑒𝛼(𝑏)𝑒𝛼(𝑎) = 𝑒𝛼(𝑏)𝑅𝛼(𝑎)  

and 

0 = 𝛼��(1 − 𝑒)𝑏�(1 − 𝑒)𝑅𝛼��(1 − 𝑒)𝑎� =
(1 − 𝑒)𝛼(𝑏)(1 − 𝑒)𝑅(1 − 𝑒)𝛼(𝑎) =
(1 − 𝑒)𝛼(𝑏)𝑅𝛼(𝑎) = 0. 

For a ring R and an endomorphism, 𝛼:𝑅 → 𝑅 
the skew polynomial ring (also called on Ore 
extension of endomorphism type) 𝑅[𝑥;𝛼] of 𝑅 
is the ring that is obtained by giving the poly-
nomial ring over 𝑅 with the new multiplication 
𝑥𝑟 = 𝛼(𝑟)𝑥 for all 𝑟 ∈ 𝑅. 

Proposition 15. If 𝑅 and 𝑅[𝑥;𝛼] 
(resp., 𝑅[[𝑥;𝛼]]) are *- reflexive, then, 𝑅 is 𝛼-
*-rigid. 

Proof. Let us consider 𝑎𝛼(𝑎) = 𝑎𝛼(𝑎∗) =
0 and 𝑝 = 𝑎𝑥, 𝑞 = 𝑎 ∈  𝑅[𝑥;𝛼] for 𝑎 ∈ 𝑅, then  

𝑝𝑅𝑞 = 𝑎𝑥𝑎 =  𝑎𝛼(𝑎)𝑥 =  0, 𝑝𝑅𝑞∗ = 

𝑎𝑥𝑎∗ = 𝑎𝛼(𝑎∗)𝑥 = 0. Since 𝑅[𝑥;𝛼] is *- re-
flexive, hence  qRp =  aax =  a2x =  0  

, 𝑞∗𝑅𝑝 =  𝑎∗𝑎𝑥 =  𝑎∗𝑎𝑥 =  0 and so  
𝑎2 =  𝑎∗𝑎 =  0. Since 𝑅 is *-reduced, we get 
𝑎 =  0. 

According to (Abdulhafed, 2019) and Proposi-
tion 15 the following results are straightfor-
ward: 

Corollary 8. If both 𝑅 and  𝑅[𝑥;𝛼] 
(resp., 𝑅�[𝑥;𝛼]�) are a reflexive *-ring, then, 
𝑅 is 𝛼-*-rigid. 

Corollary 9. If 𝑅 is an 𝛼-*-rigid *-ring and 
𝑅[𝑥;𝛼] (resp., 𝑅�[𝑥;𝛼]�) is a reversible *-ring, 
therefore, R is *-reflexive. 

Corollary 10. If R is an  𝛼-*-rigid *-ring, then, 
𝑅[𝑥;𝛼] (resp., 𝑅�[𝑥;𝛼]�)  is *-reflexive. 

If the *-ring 𝑅[𝑥;𝛼] is *-reflexive, then, 𝑅 is *-
reflexive and the converse is not correct. Also, 
the converse of Corollary 9  is wrong accord-
ing to studying the example in (Abdulhafed, 
2019). 

Next, the 𝛼-*-reflexivity and 𝛼-quasi-*-IFP do 
not imply each other. 

Example 10. For a commutative *-ring  𝑅, 

𝑇3(𝑅) = ��
𝑎 𝑏 𝑐
0 𝑎 𝑑
0 0 𝑎

� �𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅�, 

it has quasi-*-IFP, but, it does not have *-
reflexive by [(Aburawash & Abdulhafed, 
2018a), Example 5]. Thus, 𝑅 is 𝑖𝑑𝑅-quasi-*-
IFP, but it is not 𝑖𝑑𝑅-*-reflexive. 

As, a consequence from Example 10, 𝑇𝑛(𝑅) is 
not 𝛼-*-reflexive for 𝑛 ≥ 4. Clearly, if R is a 
commutative *-ring, hence, the *-ring: 

𝑇𝑛(𝑅) =

⎩
⎪
⎨

⎪
⎧

⎝

⎜
⎛

𝑎 𝑎12 𝑎13 ⋯ 𝑎1𝑛
0 𝑎 𝑎23 ⋯ 𝑎2𝑛
0 0 𝑎 ⋯ 𝑎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 𝑎 ⎠

⎟
⎞
�
�𝑎,𝑎𝑖𝑗 ∈ 𝑅,𝑛 ≥ 3

⎭
⎪
⎬

⎪
⎫

, it is not 𝛼-*-reflexive according to 
(Abdulhafed, 2019) and is quasi-*-IFP. How-
ever, it is clearly evident that 𝑇4(𝑅) is not 𝛼 -
quasi-*-IFP and so 𝑇𝑛(𝑅) is not quasi-*-IFP 
for 𝑛 ≥ 4 as reported in Example 4. 

We get the same results as stated in both stud-
ies [(Aburawash & Abdulhafed, 2018a), Corol-
lary 11(2)] and (Abdulhafed, 2019).      

Corollary 11. If 𝑅 is a semiprime *-ring, then, 
the trivial extension 𝑇(𝑅,𝑅), with adjoint invo-
lution is 𝛼-*-reflexive. 

Corollary 12. Let’s assume 𝑅 to be a reduced 
*-ring and 𝛼 is the *- endomorphism on 𝑅, 
then, the *-ring 𝑇(𝑅,𝑅), with componentwise 
involution * is 𝛼�-*-reflexive. 
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Corollary 13. Suppose 𝑅 be an 𝛼-rigid *-ring, 
then, the *-ring 𝑇(𝑅,𝑅), with componentwise 
involution * is 𝛼�-*-reflexive. 

Corollary 14. Let 𝑅 be a rigid *-ring, then, the 
*-ring 𝑇(𝑅,𝑅), with componentwise involution 
* is 𝛼�-*-reflexive. 

The trivial extension 𝑇(𝑅,𝑅) of a *-ring R can 
be extended to a *-ring 

𝑇3(𝑅) = �
𝑎 𝑏 𝑐
0 𝑎 𝑑
0 0 𝑎

�, 

and *-endomorphism 𝛼 of a *-ring 𝑅, it also is 
extended to the *-endomorphism 𝛼�: 𝑇3(𝑅) →
𝑇3(𝑅) is defined by  𝛼��𝑎𝑖𝑗� = �𝛼�𝑎𝑖𝑗�� with 
involution defined as: 

�
𝑎 𝑏 𝑐
0 𝑎 𝑑
0 0 𝑎

�
∗

= �
𝑎 𝑑 𝑐
0 𝑎 𝑏
0 0 𝑎

� 

The following example shows that 𝑇3(𝑅) can-
not be 𝛼�-*-reflexive even if 𝑅 is 𝛼-rigid-*-ring. 

Example 11. Let 𝑅 be a commutative 𝛼-rigid 
*-ring. Then, the *-ring 𝑇3(𝑅) is not 𝛼�-*-
reflexive, since the matrices  

𝐴 = �
1 0 0
0 1 0
0 0 1

�, 𝐵 = �
0 0 0
0 0 1
0 0 0

� and  

𝐶 = �
0 1 0
0 0 0
0 0 0

� ∈ 𝑇3(𝑅), 

Satisfy 

𝐴𝐵𝐶 = 𝐴𝐵𝐶∗ =  0, 

while, 

𝛼�(𝐶)𝛼�(𝐵)𝛼�(𝐴) ≠ 0, 

where 𝛼(𝑒) = 𝑒, according to (Abdulhafed, 
2019). 

Extensions of 𝛼-quasi-*-IFP and 𝛼-*-
reflexive *-rings 

In this section, recall that 𝑅 be a *-ring and 𝑆 
be a multiplicatively closed subset of 𝑅 consist-
ing of nonzero central regular elements, then, 
the localization of 𝑅 to  𝑆 is  𝑆−1𝑅 =
{𝑢−1𝑎|𝑢 ∈ 𝑆,𝑎 ∈ 𝑅},  and it also is a *-ring 
with involution ⋄ defined as: (𝑢−1𝑎)⋄ =
𝑢−1∗𝑎∗ = 𝑢∗−1𝑎∗ see for more details  
(Aburawash & Abdulhafed, 2018b). A *-
endomorphism 𝛼� on 𝑅 can be extended to 𝛼� on 
𝑆−1𝑅, the mapping 𝛼�: 𝑆−1𝑅 → 𝑆−1𝑅  is de-
fined by 𝛼�(𝑢−1𝑎) = 𝛼(𝑢−1)𝛼(𝑎) see 
[(Abdulhafed, 2019)]. Then, the following 
proposition is obtained. 

Proposition 16. A *-ring 𝑅 is 𝛼-quasi-*-IFP if 
and only if 𝑆−1𝑅 is 𝛼�-quasi-*-IFP. 

Proof. Assume that 𝛽𝛾 = 0 = 𝛽𝛾⋄ with 
𝛽 = 𝑢−1𝑎 and 𝛾 = 𝑣−1𝑏, where 𝑎, 𝑏 ∈ 𝑅 and 
𝑢, 𝑣 ∈ 𝑆. Hence, 

 𝛽𝛾 = 𝑢−1𝑎𝑣−1𝑏 = 𝑢−1𝑣−1𝑎𝑏 = (vu)-1ab = 0  

and 

𝛽𝛾⋄ = 𝑢−1𝑎(𝑣∗)−1𝑏∗ = 𝑢−1(𝑣∗)−1𝑎𝑏∗ 

= (𝑣∗𝑢)−1𝑎𝑏∗ = 0, 

since 𝑆 exists in the center of 𝑅, and so 
𝑎𝑏 = 𝑎𝑏∗ = 0. By hypothesis  acb = 0  for all 
𝑐 ∈ 𝑅, which implies 

α�(βξγ) =
α� �u-1aw-1cv-1b� = α �(vwu)-1)α(acb� = 0 

 for every 𝜉 = 𝑤−1𝑐 ∈ 𝑆−1𝑅. The converse 
is clear. 

Proposition 17. A *-ring 𝑅 is 𝛼 -*-reflexive if 
and only if 𝑆−1𝑅 is 𝛼�-*-reflexive. 

Proof. It is enough to show that 𝑆−1𝑅 is 𝛼� -*-
reflexive if  𝑅 is 𝛼 *-reflexive. Let 𝑅 be an 𝛼-
*-reflexive and  𝛽𝜉𝛾 = 0 = 𝛽𝜉𝛾⋄ with  
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𝛽 = 𝑢−1𝑎, 𝜉 = 𝑤−1𝑐 and  𝛾 = 𝑣−1𝑏, where 
𝑎, 𝑏, 𝑐 ∈ 𝑅 and 𝑢, 𝑣,𝑤 ∈ 𝑆. Hence,  

𝛽𝜉𝛾 = 𝑢−1𝑎𝑤−1𝑐𝑣−1𝑏 = 𝑢−1𝑤−1𝑣−1𝑎𝑐𝑏 =
(𝑣𝑤𝑢)−1𝑎𝑐𝑏 = 0, 

and  

𝛽𝜉𝛾⋄ = 𝑢−1𝑎𝑤−1𝑐(𝑣∗)−1𝑏∗ =
𝑢−1𝑤−1(𝑣∗)−1𝑎𝑐𝑏∗ = (𝑣∗𝑤𝑢)−1𝑎𝑐𝑏∗ = 0.   

Since 𝑆 exists in the central of 𝑅 so 

𝑎𝑐𝑏 = 0 = 𝑎𝑐𝑏∗.   

By hypothesis 𝛼(𝑏)𝛼(𝑐)𝛼(𝑎) = 0, which im-
plies that: 

𝛼�(𝛾)𝛼�(𝜉)𝛼�(𝛽) = 𝛼�(𝑣−1𝑏 )𝛼�(𝑤−1𝑐)𝛼�(𝑢−1𝑎)
= 𝛼(𝑣−1)𝛼(𝑤−1)𝛼(𝑢−1)𝛼(𝑏)𝛼(𝑐)𝛼(𝑎)
= 𝛼((𝑢𝑣𝑤)−1)𝛼(𝑏)𝛼(𝑐)𝛼(𝑎) = 0 

It is important here to discuss the *-ring of 
Laurent polynomials in 𝑥, with coefficients in a 
*-ring 𝑅, consists of all formal sums 

𝑓(𝑥) = �𝑎𝑖𝑥𝑖
𝑚

𝑖=𝑘

, 

with obvious addition and multiplication, 
where 𝑎𝑖 ∈ 𝑅 and 𝑘,𝑚 are (possibly negative) 
integers, and with involution * defined as: 

𝑓∗(𝑥) = �𝑎𝑖𝑥𝑖
𝑚

𝑖=𝑘

. 

   It is denoted as usual by 𝑅[𝑥; 𝑥−1]. If 𝛼 is *-
endomorphism of a *-ring 𝑅, then, the map 
𝛼�: 𝑅[𝑥] → 𝑅[𝑥] is defined by 

𝛼� ��𝑎𝑖𝑥𝑖
𝑚

𝑖=𝑘

� = � 𝛼(𝑎𝑖)
𝑚

𝑖=𝑘
𝑥𝑖 

 for all 𝑖, is *-endomorphism of the polynomial 
*-ring 𝑅[𝑥], and it is clear this map extends 𝛼. 

Corollary 15. Let R be a *-ring, then, 𝑅[𝑥] is 
𝛼-quasi-*-IFP if and only if 𝑅[𝑥; 𝑥−1] is 𝛼�-
quasi-*-IFP. 

Proof. It is sufficient to show the necessity. 
Clearly 𝑆 = {1, 𝑥, 𝑥2, … } is a multiplicatively 
closed subset of 𝑅[𝑥]. Since 𝑅[𝑥; 𝑥−1] =  
𝑆−1𝑅[𝑥], it follows that 𝑅[𝑥; 𝑥−1] is 𝛼�-quasi-*-
IFP by Proposition 16. 

Corollary 16. Let’s suppose R is a *-ring, then 
R[x] is  α -*-reflexive if and only if 𝑅[𝑥; 𝑥−1] 
is 𝛼�-*-reflexive. 

Proof. The important thing is to prove the ne-
cessity, since 𝑅[𝑥] is a *-subring of 𝑅[𝑥; 𝑥−1]. 
Clearly, 𝑆 = {1, 𝑥, 𝑥2, … }   is a multiplicatively 
closed subset of 𝑅[𝑥]. Since 𝑅[𝑥; 𝑥−1] =
𝑆−1𝑅[𝑥], it follows that 𝑅[𝑥; 𝑥−1] is 𝛼�-*-
reflexive by Proposition 17. 

A *-ring 𝑅 is *-Armendariz (resp., quasi-*-
Armendariz), when the polynomials  

𝑓(𝑥) = �𝑎𝑖𝑥𝑖
𝑚

𝑖=0

 

and 

𝑔(𝑥) = �𝑏𝑗𝑥𝑗
𝑛

𝑗=0

∈ 𝑅[𝑥], 

Satisfy 

𝑓(𝑥)𝑔(𝑥) = 𝑓(𝑥)𝑔∗(𝑥) = 0 

(resp., 𝑓(𝑥)𝑅[𝑥]𝑔(𝑥) = 𝑓(𝑥)𝑅[𝑥]𝑔∗(𝑥) =
0), then, 𝑎𝑖𝑏𝑗 = 0 (resp., 𝑎𝑖𝑅𝑏𝑗 = 0) for all 𝑖, 𝑗 
(consequently 𝑎𝑖𝑏𝑗∗ = 0  (resp.; 𝑎𝑖𝑅𝑏𝑗∗ = 0)). 

Theorem 1. Let 𝑅 be a *-Armendariz *-ring. 
Then the following statements are equivalent 

1.  𝑅 is 𝛼-quasi-*-IFP. 
2. 𝑅[𝑥] is α�-quasi-*-IFP. 
3. 𝑅[𝑥; 𝑥−1] is α�-quasi-*-IFP. 
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Proof. It is enough to prove (1) to obtain (2).  
Let’s consider  

𝑓(𝑥) = �𝑎𝑖𝑥𝑖 ,
𝑚

𝑖=0

𝑔(𝑥) = �𝑏𝑗𝑥𝑗
𝑛

𝑗=0

∈ 𝑅[𝑥] 

 Therefore,  

𝑓(𝑥)𝑅[𝑥]𝑔(𝑥) = 0 =  𝑓(𝑥)𝑅[𝑥]𝑔∗(𝑥). 

 By hypothesis, 

𝑎𝑖𝑏𝑗 = 0 = 𝑎𝑖𝑏𝑗∗ 
and 

𝛼(𝑎𝑖)𝛼(𝑟)𝛼(𝑏𝑗) ∈ 𝑅 for all 𝑖, 𝑗 and 𝑟 ∈  𝑅.  

Hence, 𝛼�𝑓(𝑥)�𝑅[𝑥]𝛼�𝑔(𝑥)� = 0, and hence 
that 𝑅[𝑥] is α�-quasi-*-IFP. 

Theorem 2. Let us assume 𝑅 is a quasi-*-
Armendariz *-ring, then the following state-
ments are equivalent. 

1. 𝑅 is 𝛼-*-reflexive. 
2. 𝑅[𝑥] is α�-*-reflexive. 
3. 𝑅[𝑥; 𝑥−1] is 𝛼�-*-reflexive. 

Proof. It suffices to show that (1)  ⇒  (2). As-
sume 

𝑓(𝑥) = �𝑎𝑖𝑥𝑖 ,
𝑚

𝑖=0

𝑔(𝑥) = �𝑏𝑗𝑥𝑗
𝑛

𝑗=0

∈ 𝑅[𝑥] 

 leads us to obtain: 

𝑓(𝑥)𝑅[𝑥]𝑔(𝑥) = 0 = 𝑓(𝑥)𝑅[𝑥]𝑔∗(𝑥). 

Since 𝑅 is quasi-*-Armendariz, it is given 
𝑎𝑖𝑅𝑏𝑗 = 0 for all 𝑖, 𝑗. But, 𝑅 is 𝛼-*-reflexive, 
so  𝛼�𝑏𝑗�𝑅𝛼(𝑎𝑖) = 0 for all 𝑖, 𝑗.  

Consequently 𝛼(𝑔(𝑥))𝑅[𝑥]𝛼(𝑓(𝑥))  =  0, and 
hence 𝑅[𝑥] is α�-*-reflexive. 

The following corollaries are obtained by The-
orems 1 and 2. 

Corollary 17. Let 𝑅 be an Armendariz *-ring. 
Then, the following relations are equivalent: 

1. 𝑅 is 𝛼-quasi-*-IFP. 
2. 𝑅[𝑥] is α�-quasi-*-IFP. 
3. 𝑅[𝑥; 𝑥−1] is 𝛼�-quasi-*-IFP. 

Corollary 18. Let 𝑅 be a quasi-Armendariz *-
ring. Then, the following relations are equiva-
lent: 

1. 𝑅 is 𝛼-*- reflexive. 
2. 𝑅[𝑥] is α�-*-reflexive. 
3.  𝑅[𝑥; 𝑥−1] is α�-*-reflexive. 

It is known that, the Dorroh extension 
𝐷(𝑅,𝑍) = { (𝑟,𝑛): 𝑟 ∈  𝑅, 𝑛 ∈ ℤ} of a *-ring 
𝑅 is a ring with componentwise addition and 
multiplication: 

(𝑟1,𝑛1)(𝑟2,𝑛2) = (𝑟1𝑟2 + 𝑛1𝑟2 + 𝑛2𝑟1,𝑛1𝑛2). 

The involution of 𝑅 can be extended naturally 
to 𝐷(𝑅,ℤ) as (𝑟,𝑛)∗ = (𝑟∗,𝑛) (see 
(Aburawash, 1997)). A *-endomorphism 𝛼 on 
𝑅 can be extended to 𝛼� on 𝐷(𝑅,ℤ) by 
 𝛼�(𝑟,𝑛)  =  (𝛼(𝑟),𝑛) (see (Başer et al., 2009)). 

Proposition 18. A *-ring 𝑅 is 𝛼-quasi-*-IFP 
with 𝛼(1) = 1, if and only if its Dorroh exten-
sion 𝐷(𝑅,ℤ) is 𝛼�-quasi-*-IFP. 

Proof. Let (𝑟1,𝑛1), (𝑟2,𝑛2) ∈ 𝐷 with 
(𝑟1,𝑛1)(𝑟2,𝑛2) = 0 = (𝑟1,𝑛1)(𝑟2∗,𝑛2). 

Then, 

𝑟1𝑟2 + 𝑛1𝑟2 + 𝑛2𝑟1 + 𝑛1𝑛2 = 0 = 𝑟1𝑟2∗ + 
𝑛1𝑟2∗ + 𝑛2𝑟1 + 𝑛1𝑛2. 

 Since ℤ is a *-domain, we have 𝑛1 = 0 or 
𝑛2 = 0. If 𝑛1 = 0 then  0 =  𝑟1𝑟2  +  𝑛2𝑟1 =
𝑟1(𝑟2 + 𝑛2) and 0 = 𝑟1𝑟2∗ + 𝑛2𝑟1 = 𝑟1(𝑟2∗ +
𝑛2). Since 𝑅 is 𝛼-quasi-*-IFP with 𝛼(1) = 1, 
0 = 𝛼�(𝑟1)𝛼�(𝑟)𝛼��(𝑟2 + 𝑛2)� = 𝛼(𝑟1)𝛼(𝑟) 
𝛼(𝑟2) + 𝛼(𝑟1)𝛼(𝑟)𝑛2  and 
0 = 𝛼�(𝑟1)𝛼�(𝑟)𝛼��(𝑟2∗ + 𝑛2)� =
𝛼(𝑟1)𝛼(𝑟)𝛼(𝑟2∗) + 𝛼(𝑟1)𝛼(𝑟)𝑛2 for all 𝑟 ∈
 𝑅. This yields 
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0 = 𝛼�((𝑟1,𝑛1))𝛼�((𝑟,𝑛))𝛼�((𝑟2,𝑛2))  = 
(α(r1)α(r) + nα((r1)) α(r2) +
(α(r1)α(r) + 𝑛α(𝑟1))𝑛2 for any (𝑟, 𝑛)  ∈ 𝐷, 
and hence 𝛼�((𝑟1,𝑛1))𝐷𝛼�((𝑟2,𝑛2))  =  0.   
Now, let 𝑛2 = 0. Then, (𝑟1 + 𝑛1)𝑟2 = 0, and 
so 0 = (𝛼(𝑟1) + 𝑛1)𝑅𝛼(𝑟2) = 0. It is similar to 
obtain 𝛼��(𝑟1,𝑛1)�𝐷𝛼��(𝑟2,𝑛2)� = 0,  and thus, 
the Dorroh extension 𝐷(𝑅,ℤ) is 𝛼�-quasi-*-IFP. 

Proposition 19. A *-ring 𝑅 is 𝛼-*-reflexive 
with 𝛼(1) = 1, if and only if its Dorroh exten-
sion 𝐷(𝑅,ℤ) is 𝛼�-*-reflexive. 

Proof. Suppose that (𝑟1,𝑛1), (𝑟2,𝑛2) ∈ 𝐷 with 
(r1, n1)(r, n)(r2, n2) = 0 =
(r1, n1)(r, n)(𝑟2∗,𝑛2). For any (𝑟,𝑛) ∈ 𝐷. The 
claim here is  

𝛼��(𝑟2,𝑛2)�𝛼��(𝑟, 𝑛)�𝛼��(𝑟1,𝑛1)� = 0. 

In fact, we have 

(𝑟1𝑟𝑟2 + 𝑛1𝑟𝑟2 + 𝑛𝑟1𝑟2 + 𝑛1𝑛𝑟2 + 𝑛2𝑟1𝑟 + 

𝑛1𝑛2𝑟 + 𝑛𝑛2𝑟1,𝑛1𝑛𝑛2) = 0 = (𝑟1𝑟𝑟2∗ + 𝑛1𝑟𝑟2∗ 

+𝑛𝑟1𝑟2∗ + 𝑛1𝑛𝑟2∗ + 𝑛2𝑟1𝑟 + 𝑛1𝑛2𝑟 +
𝑛𝑛2𝑟1,𝑛1𝑛𝑛2), 𝑟1𝑟𝑟2 + 𝑛1𝑟𝑟2 + 𝑛𝑟1𝑟2 +
𝑛1𝑛𝑟2 + 𝑛2𝑟1𝑟 + 𝑛1𝑛2𝑟 + 𝑛𝑛2𝑟1 = 0   

= r1rr2* + n1rr2* + nr1r2* + n1nr2* + n2r1r 
+𝑛1𝑛2𝑟 + 𝑛𝑛2𝑟1 

 and  

𝑛1𝑛𝑛2 = 0, 

since ℤ is a *-domain 𝑛1 = 0, 𝑛 = 0 or 𝑛2 = 0. 
If 𝑛1 = 0, then, 𝑟1𝑟𝑟2 + 𝑛𝑟1𝑟2 + 𝑛2𝑟1𝑟 +
𝑛𝑛2𝑟1 = 0, and so we have:  

0 = 𝑟1𝑟𝑟2 + 𝑛𝑟1𝑟2 + 𝑛2𝑟1𝑟 + 𝑛𝑛2𝑟1 = 𝑟1(𝑟,𝑛) 

(𝑟2,𝑛2) = (𝛼(𝑟2),𝑛2)(𝛼(𝑟),𝑛)𝛼(𝑟1) = 𝛼(𝑟2) 

𝛼(𝑟)𝛼(𝑟1) + 𝛼(𝑟2)𝑛𝛼(𝑟1) + 𝑛2𝛼(𝑟)𝛼(𝑟1) +
n2nα(r1), since 𝑅 is 𝛼�-*-reflexive *-ring.      
This shows that 

 𝛼��(𝑟2,𝑛2)�𝛼��(𝑟, 𝑛)�𝛼��(𝑟1,𝑛1)� =
 𝛼(𝑟2)𝛼(𝑟)𝛼(𝑟1) + 𝛼(𝑟2)𝑛𝛼(𝑟1) +
𝑛2𝛼(𝑟) 𝛼(𝑟1) + 𝑛2𝑛𝛼(𝑟1) =
𝛼(𝑟2)𝛼(𝑟)𝛼(𝑟1) + 𝑛2𝛼(𝑟)𝛼(𝑟1) +
𝑛𝛼(𝑟2)𝛼(𝑟1) + 𝑛2𝑛𝛼(𝑟1) + 𝑛1𝛼(𝑟2)𝛼(𝑟) +
𝑛1𝑛2𝛼(𝑟) + 𝑛1𝑛𝛼(𝑟) = 0,  𝑛2𝑛𝑛1 = 0. 

If  𝑛2 = 0, then, 

𝑟1𝑟𝑟2 + 𝑛1𝑟𝑟2 + 𝑛𝑟1𝑟2 + 𝑛1𝑛𝑟2
= (𝑟1,𝑛1)(𝑟,𝑛)𝑟2 = 𝛼(𝑟2) 

𝛼��(𝑟,𝑛)�𝛼��(𝑟1,𝑛1)�
= 𝛼(𝑟2)𝛼(𝑟)𝛼(𝑟1)
+ 𝛼(𝑟2)𝛼(𝑟)𝑛1 + 𝛼(𝑟2)𝑛𝛼(𝑟1)
+ 𝛼(𝑟2)𝑛𝑛1 = 

𝛼(𝑟2)𝛼(𝑟)𝛼(𝑟1) + 𝑛2𝛼(𝑟)𝛼(𝑟1)
+ 𝑛𝛼(𝑟2)𝛼(𝑟1) + 𝑛2𝑛𝛼(𝑟1)
+ 𝑛1𝛼(𝑟2)𝛼(𝑟) + 𝑛1𝑛2𝛼(𝑟)
+ 𝑛1𝑛𝛼(𝑟2) = 0. 

Therefore, we get 0 = 𝛼��(𝑟2,𝑛2)�𝛼��(𝑟,𝑛)� 
𝛼��(𝑟1,𝑛1)�, then, 𝐷 is 𝛼�-*-reflexive.        

Conversely, assume that 𝐷 is 𝛼�-*-reflexive. Let 
𝛼(𝑟1)𝑅𝛼(𝑟2) = 0 = 𝛼(𝑟1)𝑅𝛼(𝑟2∗), for 𝑟1, 𝑟2 ∈
𝑅. Then, 𝛼(𝑟1)(𝛼(𝑟) + 𝑛))𝛼(𝑟2) = 0 =
𝛼(𝑟1)(𝛼(𝑟) + 𝑛))𝛼(𝑟2∗) for any(𝑟,𝑛) ∈ 𝐷, this 
implies: 

0 = 𝛼��(𝑟1, 0)�𝛼��(𝑟,𝑛)�𝛼��(𝑟2, 0)� =
𝛼��(𝑟1, 0)�𝛼��(𝑟,𝑛)�𝛼��(𝑟2∗, 0)�,for any (𝑟,𝑛)  ∈
 𝐷. Since 𝐷 is 𝛼�-*-reflexive, we have 0 =
𝛼��(𝑟2, 0)�𝛼��(𝑟,𝑛)�𝛼��(𝑟1, 0)� = 

𝛼��(𝑟2∗, 0)�𝛼��(𝑟, 𝑛)�𝛼��(𝑟1, 0)�, 

and hence, 𝛼(𝑟2)(𝛼(𝑟) + 𝑛)𝛼(𝑟1) = 0 = 

𝛼(𝑟2∗)(𝛼(𝑟) + 𝑛)𝛼(𝑟1), thus, 

𝛼(𝑟2)𝑅𝛼(𝑟1) = 0 = 𝛼(𝑟2∗)𝑅𝛼(𝑟1). 

Recall that, a ring 𝑅 is called right Ore, if it is 
given 𝑎, 𝑏 ∈ 𝑅 with 𝑏 regular, there exist 
𝑎1, 𝑏1 ∈ 𝑅 with 𝑏1 regular such that: 𝑎𝑏1 =
𝑏𝑎1. Left Ore is defined similarly, and 𝑅 is Ore 
ring, whether it is both right and left Ore. For 
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*-rings, right Ore implies left Ore and vice ver-
sa. It is a known fact that 𝑅 is Ore if and only if 
its classical quotient ring 𝑄 of 𝑅 exists and for 
*-rings, * can be extended to 𝑄 by (𝑎−1𝑏)∗ =
𝑏∗(𝑎∗)−1. A *-automorphism 𝛼 on 𝑄 by 
𝛼�(𝑎𝑏−1) = 𝛼(𝑎)𝛼(𝑏)−1 (see [(Martindale & 
3rd, 1969), Lemma 4], (Hong et al., 2006)). 
The following theorem  is generalized by 
[(Aburawash & Abdulhafed, 2018a), Theorem 
5]. 

Theorem 3. Let R be an Ore *-ring, α the *-
automorphism of R, and Q be its classical quo-
tient *-ring, then, R is α-*-reflexive if and only 
if Q is 𝛼�-*-reflexive. 

Proof. Let 𝑅 be an  𝛼-*-reflexive *-ring and 
𝛽𝛾𝜉 = 0 = 𝛽𝛾𝜉∗ with  𝛽 = 𝑎𝑢−1, 𝛾 = 𝑏𝑣−1 
and 𝜉 = 𝑐𝑤−1 ∈ 𝑄. By hypothesis for 
𝑎, 𝑏, 𝑐,𝑑,𝑢, 𝑣,𝑤 ∈ 𝑅, there exist 𝑏1,𝑢1 ∈ 𝑅 
with 𝑢1 regular 

          𝑢𝑏1 = 𝑏𝑢1,𝑢−1𝑏 = 𝑏1𝑢1−1,        (1) 

then, 0 = 𝛽𝛾𝜉 = 𝑎𝑢−1𝑏𝑣−1𝑐𝑤−1 = 𝑎𝑏1𝑢1−1 
𝑣−1𝑐𝑤−1 . Also, for 𝑐, 𝑣 ∈ 𝑅 there exist 
𝑐1, 𝑣1, 𝑐1∗ ∈ 𝑅 with 𝑣1 regular such that: 

𝑣𝑐1 = 𝑐𝑣1, 𝑣−1𝑐 = 𝑐1𝑣1−1 

 and 

𝑣𝑐1∗ = 𝑐∗𝑣1,𝑣−1𝑐∗ = 𝑐1∗𝑣1−1,        (2) 

so, we have  0 = 𝛽𝛾𝜉 = 𝑎𝑏1𝑢1−1𝑐1𝑣1−1𝑤1−1. 
For 𝑐,𝑢 ∈ 𝑅, there exist 𝑐1∗, 𝑐2, 𝑐2∗,𝑢2 ∈ 𝑅 with 
𝑢2 regular such that: 

𝑢1𝑐2 = 𝑐1𝑢2, 𝑢1−1𝑐1 = 𝑐2𝑢2−1,       (3) 

 𝑢1𝑐2∗ = 𝑐1∗𝑢2, 𝑢1−1𝑐1∗ = 𝑐2∗𝑢2−1,      (4) 

and hence, it is obtained 

0 = 𝛽𝛾𝜉 = 𝑎𝑏1𝑐2𝑢2−1𝑣1−1𝑤−1

= 𝑎𝑏1𝑐2(𝑤𝑣1𝑢2)−1 

which implies 𝑎𝑏1𝑐2 = 0. Similarly, 

0 = 𝛾𝛽𝜉∗ = 𝑎𝑢−1𝑏𝑣−1(𝑐𝑤−1)∗ = 𝑎𝑢−1𝑏𝑣−1 

(𝑤∗)−1𝑐∗ = 𝑎𝑏1𝑢1−1𝑣−1(𝑤∗)−1𝑐∗ =
𝑎𝑏1(𝑤∗𝑣𝑢1)−1𝑐∗, 

where 𝑔 = 𝑤∗𝑣𝑢1 ∈ 𝑅. For 𝑐,𝑔 ∈  𝑅, there 
exist 𝑔1,𝑐2∗ ∈ 𝑅 with 𝑔1 regular such that:  

𝑔𝑐2∗ = 𝑐∗𝑔1,  𝑔−1𝑐∗ = 𝑐2∗𝑔1−1. 

Thus,  
           0 = 𝛾𝛽𝜉∗ = 𝑎𝑏1𝑐2∗𝑔1−1, 
for which implies that 𝑎𝑏1𝑐2∗ = 0,  then, 
𝑎𝑏1𝑐2 = 0 = 𝑎𝑏1𝑐2∗. In the following computa-
tions, the condition that 𝑅 is 𝛼-*-reflexive can 
be used freely. Since 𝑎𝑏1𝑐2 = 0, we have 
𝑐2𝑏1𝑎 = 0, and so 𝑐2𝑏1𝑎𝑢 = 0. This implies 
that: 

 𝑎𝑢𝑏1𝑐2 = 𝑎𝑏𝑢1𝑐2 = 0 by (1), then, 𝑢1𝑐2𝑏𝑎 =
0, and so 𝑐1𝑢2𝑏𝑎 = 0 by (3). This leads to 
𝑎𝑏𝑐1𝑢2 = 0, and 𝑎𝑏𝑐1 = 0. Hence, 𝑐1𝑏𝑎 = 0, 
and thus  𝑣𝑐1𝑏𝑎 = 0, so 𝑎𝑏𝑐𝑣1 = 0. Hence, we 
get 𝑎𝑏𝑐 = 0, and so 𝑐𝑏𝑎 = 0. Similarly, 
𝑎𝑏1𝑐2∗ = 0, we have 𝑐2∗𝑏1𝑎 = 0, and so 
𝑐2∗𝑏1𝑎𝑢 = 0. This implies that 𝑎𝑢𝑏1𝑐2∗ =
𝑎𝑏𝑢1𝑐2∗ =0 by (1), then, 𝑢1𝑐2∗𝑏𝑎 = 0,  and so 
𝑐1∗𝑢2𝑏𝑎 = 0 by (4). This shows that 𝑎𝑏𝑐1∗𝑢2 =
0 and 𝑎𝑏𝑐1∗ = 0. Hence, 𝑐1∗𝑏𝑎 = 0, and thus  
𝑣𝑐1∗𝑏𝑎 = 0, so 𝑎𝑏𝑐∗𝑣1 = 0 by (2). Hence, we 
get 𝑎𝑏𝑐∗ = 0 and so 𝑐∗𝑎𝑏=0. On the other 
hand,  𝜉𝛾𝛽 = 𝛼�(𝑐𝑤−1)𝛼�(𝑏𝑣−1)𝛼�(𝑎𝑢−1) and 
similarly there exist 𝑎3,𝑎4, 𝑏3,𝑤3, 𝑣3, 𝑣4 ∈ 𝑅 
with 𝑤3, 𝑣3, 𝑣4 regular such that: 

𝛼(𝑤)𝛼(𝑏3) = 𝛼(𝑏)𝛼(𝑤3), 𝛼(𝑤−1)𝛼(𝑏) =
𝛼(𝑏3)𝛼(𝑤3

−1), 

 𝛼(𝑣)𝛼(𝑎3) = 𝛼(𝑎)𝛼(𝑣3), 𝛼(𝑣−1)𝛼(𝑎) =
𝛼(𝑎3)𝛼(𝑣3−1) 

and 

𝛼(𝑤)𝛼(𝑎4) = 𝛼(𝑎3)𝛼(𝑣4), 𝛼(𝑤3
−1)𝛼(𝑎3) =

𝛼(𝑎4)𝛼(𝑣4−1). 

Then, we get 

𝜉𝛾𝛽 = 𝛼(𝑐)𝛼(𝑏3)𝛼(𝑤3
−1)𝛼(𝑎3)𝛼(𝑣3−1)𝛼(𝑢−1)

= 𝛼(𝑐)𝛼(𝑏3) 𝛼(𝑎4)𝛼(𝑣4−1)𝛼(𝑣3−1)𝛼(𝑢−1) = 
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α(cb3a4)α�(uv3v4)-1�. Since 𝛼(𝑐𝑏𝑎) = 0, we 
obtain 𝛼(𝑤3)𝛼(𝑐𝑏𝑎) = 0, and so 

𝛼(𝑎)𝛼(𝑏)𝛼(𝑤3)𝛼(𝑐) = 0 =
 𝛼(𝑎)𝛼(𝑤)𝛼(𝑏3)𝛼(𝑐). 

This implies that: 

𝛼(𝑐)𝛼(𝑏3)𝛼(𝑎)𝛼(𝑤) = 0, 
and thus 

𝛼(𝑐)𝛼(𝑏3)𝛼(𝑎) = 0. 
Then, 

𝛼(𝑐)𝛼(𝑏3)𝛼(𝑎)𝛼(𝑣3) =
𝛼(𝑐)𝛼(𝑏3)𝛼(𝑣)𝛼(𝑎3) = 0  and so, 
𝛼(𝑣)𝛼(𝑎3)𝛼(𝑏3)𝛼(𝑐) = 0. 

Hence, 𝛼(𝑎3𝑏3𝑐) = 0 = 𝛼(𝑐𝑏3𝑎3) and then  

𝛼(𝑐)𝛼(𝑏3)𝛼(𝑎3)𝛼(𝑣4) =
𝛼(𝑐)𝛼(𝑏3)𝛼(𝑤) 𝛼(𝑎4) =
𝛼(𝑤𝑎4)𝛼(𝑏3)𝛼(𝑐) = 0.  

It follows that 𝛼(𝑎4)𝛼(𝑏3)𝛼(𝑐) = 0 and we get 
𝛼(𝑐)𝛼(𝑏4)𝛼(𝑎3) = 0. Therefore, 

𝜉𝛾𝛽 = 𝛼�(𝑐𝑤−1𝑏𝑣−1𝑎𝑢−1) =
𝛼(𝑐𝑏3𝑎4)(𝑢𝑣3𝑣4)−1 = 0.Then 𝑄 𝛼�-*-
reflexive. 

Finally, according to the study (Abdulhafed, 
2019)], [(Aburawash & Abdulhafed, 2018a), 
Theorem 5], and Theorem 3, the following 
corollaries are deduced. 

Corollary 19. If R is reflexive *-ring, then Q is 
𝛼�-*-reflexive. 
Corollary 20. If Q is reflexive *-ring, then R is 
α-*-reflexive. 
Corollary 21. If R is α-*-reversible *-ring, 
then Q is 𝛼�-*-reflexive. 

Corollary 22. If Q is 𝛼�-*-reversible *-ring, 
then R is α-*-reflexive. 

Conclusion And Future Directions 

All the results of the paper are summarized by 
using a diagram explaining the relations among 

the corresponding classes.It is possible to fol-
low implications in the class of rings with invo-
lution. 

 
Most importantly, the study has explored the 
following several new results. 

1. Every 𝛼-rigid is 𝛼-*-reflexive.  
2. Every *-rigid is 𝛼-*-reflexive. 
3. Every 𝛼-*-reversible is 𝛼-*-reflexive. 
4. Each 𝛼-*-reversible is 𝛼-quasi-*-IFP.  

Finally, these results pave the way for further 
research into some classes of *-rings which 
generalize that of α-*-reflexive *-rings and in-
vestigate their properties. 

Based on the above results, we strongly rec-
ommend studying the *-rings independently by 
using both morphisms and structures presiding 
its involution. However, it is good to join the 
involutive structures with their non-involutive 
counterparts. Future work will be concerned 
with deeper analysis of *-rings, new properties 
of the created structures and new several struc-
tures in the involutive sense. The following 
questions should be an inception for new 
works: 
1.  Studying the extensions over *-Baer *-rings 
as polynomials, skew polynomials, 
and matrices is very important. What are the 
hypotheses needed to do that? 
2. How are the extensions of α -*-reflexive 
possible? 
3. Is there a possibility to get a definition for 
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central α-*-reflexive *-rings analogously to 
central *-reflexive rings? 
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علـى (خاصـیة  اتعمیمـكونـه  الالتفافیـةدراج المعـاملات، الانعكـاس) للحلقـات إ (خاصـیة شـبة تمدیـدمفهـوم  الدراسة قدمت :المستخلص
 للحلقــات الالتفافیــة تكــون )دراج المعــاملات، الانعكــاسإ هة شــبدراج المعــاملات، الانعكــاس) للحلقــات الالتفافیــة وكــل (خاصــیإ هشــب

دراج المعــاملات إ هلخاصــیة شــب الكــافيدرس الشــرط تــ كمــاالانعكــاس) للحلقــات الالتفافیــة. دراج المعــاملات، إ هلخاصــیة شــبتمدیــدا (
ــــتم أخیــــرادراج المعــــاملات، الانعكــــاس). إ ه(لخاصــــیة شــــب اتمدیــــد والانعكــــاس لتكــــون ــــق مــــن ال وی دراج إ ه(لخاصــــیة شــــب تمدیــــدتحق

 نواع الحلقات كثیرات الحدودأالمعاملات، الانعكاس) لبعض 

: الحلقـــات الالتفافیـــة المختزلـــة، الحلقـــات الالتفافیـــة الصـــلبة، تمدیـــد الحلقـــات الالتفافیـــة الصـــلبة، تمدیـــد الحلقـــات المفتاحیـــةالكلمـــات 
، تمدیـد الحلقـات الالتفافیـة الانقلابیـة، دراج المعـاملاتإشـبة  خاصـیةب ، تمدیـد الحلقـات الالتفافیـةدراج المعـاملاتإخاصـیة ب الالتفافیـة
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