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Abstract: The Mohand transform is a new integral transform introduced by Mohand M. Ab-
delrahim Mahgoub to facilitate the solution of differential and integral equations. In this arti-
cle, a new integral transform, namely Mohand transform was applied to solve ordinary differ-
ential equations with variable coefficients by using the modified version of Laplace and Su-

mudu transforms.
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INTRODUCTION

Integral transforms play an important role in
many fields of science. In the literature, an
integral transform is widely used in physws
astronomy, optics, and engineering mathe-
matics.

The term "Differential Equation" was pro-
posed in 1676 by Leibniz. The first studies of
these equations were carried out in the late
17% century. Differential equations are pow-
erful tools in the study of many problems in
science and technology (Khan et al., 2018).

Recently, Mohand M. Mahgoub introduces a
new integral transform named the "Mohand
Transform", and it has further applied to the
solution of ordinary and partial differential
equations. The purpose of this paper is to
solve differential equations with variable co-
efficients using Mohand Transform.

DEFINITIONS AND STANDARD RE-
SULTS

Definition 2.1 (Mohand Transform) (Mohand
& Mahgoub, 2017):

A new transform called the Mohand Trans-
form is defined for a function of exponential
order. We consider functions in the set A de-

fined by
I
42 () (t)<Me",
if t e(—l)j x[0,00)

For a given function in the set A, The constant
M must be a finite number k,, &k, may be finite

or infinite.

The Mohand Transform denoted by operator
M (-) defined by the integral:

eV'dt ,t>0,

MI[f(t) jf
K, <v <K,

1.1 Some Properties of Mohand Trans-
form(Aggarwal & Chauhan, 2019)
a) Linearity Property :
if M[f,(t)]=R,(v) , M[f,(t)]=R,(v)then
M [af (t)+bf,(t)]=aR, (v )+bR,(v)
where a,b are arbitrary constants.

b) Change of Scale Property:
if M[f(t)]=R(v) then
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—aR|Y
M [f (at)] =aR (a]
c¢) Shifting Property:
if M[f(¢t)]=R(v) then

M [eatf (t)} zl:(vv_a)z

d) Convolution Theorem:
if M[f,(t)]=R,(v) , M[f,(t)]=R,(v)then

ML) (0)] =5 R 6) R ()

where f,(¢)* f, (t) is defined by

K@% L) =] fi(t-x) f,(x)ax
= [ /1(x) 15 (¢ = x)dx

e) Mohand Transform of the Integral of a
Function:

£ () :if M/ (t)]=R(v) then

MBf (z)dz}vlze )

f) Mohand Transform of the Derivatives:
if M[f(¢t)]=R(v), then

}R (v —a)

i) ML/ ()] =vR (v)-vf (0)

i) M [f ”(t):' =v’R(v)-vf (0)—v’f'(0)
iii) M [t f (r)]:{vz—%}e(v)

iv) M [tf'(1)]=2R(v)-2vf (0)_%

[v R (v )—v 2f (0)]

v) M[tf"(t)]=2vR(v)-2v’f(0)-2
xv f'(0 ——[ "R(v)—=v'£(0)=v*f'(0)]
Notice that (i), (i1) are proved in (Mohand &

Mahgoub, 2017) and (iii) are proved in
(Aggarwal & Chauhan, 2019)

And from (iii), one can deduce that

M[or (]| 2= [ (1)

v

:|:z—j—v:|[vR (v )—v °’f (0)]
2R (v)-21 (0)-“-[R ()7 (0)]

v

And in a similar way, one can deduce that

A OIRES 0]

2 d

{“E}[ R(v)-v (0)=v’(0)]

=2vR(v)—2v2f(O)—2vf’(0)—%[v2R v)
7 (0)-v7'(0)]
g) Theorem 2.1: if M [f (¢)]=R(v) then

nm[vizze v )} ~0

v —>0

Proof:
M[f (t)]zR(v)zv _([f (t)e™dt
N VLZR(V):Te”f(t)dt

Mohand Transform of Some Functions
(Aggarwal et al., 2018)
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S.N f(t) Mf(t)]=R(v)
1 1 v
t 1
3 2 2!
\%
'
4 t", ne Z_'l
%
5 at VZ
e
vV —a
2
6. sinat av
vitad?
3
7. cosat 4
vit+ad?
2
8. sinhat av
vz—az
3
9. coshat v
vz—az
V2
10. J, (1
0( ) 1+v?
2
.
11. Jy(at) —
a” +v
3
12. J,(1) P p—
\,/l+v2
APPLICATIONS

Example 3.1 (Khan et al., 2018)

Solve the differential equation:
V'+ty'=y=0
with the initial condition,
v (0)=0,y'(0)=1

Solution: Taking Mohand transform to give the
following equation

v’R (v)—v3f(0)—v2f'(0)+2R (v)—2vf (0)
SR ()-vf (0)]-R (v)=0
sz(v)—v2+R(v)—vR'(v)—R(v)=0

R'(v)—vR (v):—v

which is a linear differential equation. Its solu-
tion is

R (v):l+ce7

= R(v)=1  (by Theorem 2.1 ¢=0)
By using inverse Mohand Transform, we get
v (t)=t
Example 3.2 (Nagle et al., 2014)
Consider the ordinary differential equation:
y"'+2ty'—4y =1
with the initial condition,
v (0)=0,y'(0)=0

Solution: Taking Mohand transform to given
equation

vIR(v)—v (0)=vf'(0)+4R (v)—4v f (0)
2L LR () -v Y (0)]-4R () =v

dv

vIR(v)-2v R'(v)—2R (v):v

vi=2

R’(v)—{ > }R(v):?

Which is a linear differential equation. Its solu-
tion is

vZ

R(v)=%+%ce4

= R(v) ! (by Theorem 2.1 ¢=0)
v

= RE)=3, %]

By using inverse Mohand Transform, we get
1,
t)=—t
y(6)=5

Example 3.3 (Raisinghania, 2009)
Solve the differential equation:
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¢t y " _y ’ :t2
with the initial condition ,
y (O):O,y'(O):O

Solution: Taking Mohand transform to given
equation

2vR(v)-2v?f (O)—va'(O)—%[sz v)-

vIf (0)=vf (0)]—vR (v)+vf (0)=§
vR(v)—2vR(v)—v2R'(v)=§
R()+ TR () =3

Which is a linear differential equation. Its solu-
tion is
2 ¢

R(v)=—+—

()=
By using inverse Mohand Transform, we get

15 ¢,
t)=—=t>+—t
y(0)=31"+3

Example 3.4 (Raisinghania, 2009)
Solve the differential equation:

ty"+y'+4ty =0
with the initial condition,
y(0)=3,y"(0)=0

Solution: Taking Mohand transform to given
equation

2vR(v)-2vf (0)—2vf'(0)—a%|:v ‘R(v)

v3f(0)—v2f 0):|+VR (v)—vzf (0)+
4[5_%%(\)):0

2v R (\/)—6\/2 —-2v R (v)—sz'(v)+9v2+

vR(v)—3v2+§R (v)—4R'(v):0

v

(v2+4)R’(v)—(v +§]R (v)=0

= R'(v){LS)]R(V)

v(v2+4
_ d[R()] _ v+g _(v7+4)+4
R(v) v(v2+4) v(v2+4)
N d[R ] 2
R(v) v (v2+4)

Jv2+4

By using inverse Mohand Transform, we get
y(t)=c J,(21)
By using initial condition y (0)=3
Since J, (0)=1, we get ¢ =3
y(t)=3J,(21)

CONCLUSION

In this paper, we apply a new integral trans-
form "Mohand Transform" to solve some ordi-
nary differential equations with variable coeffi-
cients, and all solutions are satisfied by putting
them back in the corresponding equations. The
result reveals that the proposed method is very
efficient, simple, and can be applied to linear
differential equations.
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