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Abstract: The normal mode analysis method was used to study the effect of both the initial stress
and the magnetic field on a thermally elastic body. This method is used to obtain the exact expres-
sions for the considered variables. Some particular cases are also discussed in the context of the
problem. The generalized thermal elasticity equations were reviewed under the influence of the
basic initial stress and the magnetic field using the theory (Green-Naghdi) of the second and third
types (the second type with no energy dispersion and the third type with energy dispersion). The
different physical quantities were illustrated in the presence and absence of both the initial stress
and the magnetic field. The results of this research show the extent of difference between the se-
cond and third types of Green and Naghdi's theory. All results and figures were obtained using

(MATLAB R2013a) program.
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INTRODUCTION

The generalized theory of thermoelasticity is
one of the modified versions of the classical
uncoupled and coupled theory of thermoelas-
ticity and has been developed in order to re-
move the paradox of physical impossible
phenomena of the infinite velocity of thermal
signals in the classical coupled thermoelastic-
ity. (Hetnarski & Ignaczak, 1999) examined
five generalizations of the coupled theory of
thermoelasticity. The first generalization was
proposed by (Lord & Shulman, 1967), which
involves one relaxation time for a thermoe-
lastic process. The second generalization is
due to (Green & Lindsay, 1972) which takes
into account two relaxation times. The third
generalization of the coupled theory of ther-
moelasticity was introduced by (Green &
Naghdi, 1993), who developed different theo-
ries labeled type I, type II, and type III. The
(G-N 1) theory in the linearized theory is
equivalent to the classical coupled thermoe-

lasticity theory. The (G-N II) theory does not
admit energy dissipation, while the third (G-
N III) theory admits dissipation of energy.
The heat flux is a combination of type I and
type II. Both type II and type III theories im-
ply a finite speed of propagation for heat
waves. (Bargmann & Steinmann, 2006) in-
vestigated the (G-N) approach for modeling
the phenomenon of second sound.(Othman &
Atwa, 2011; Othman & Atwa, 2012; Othman et
al., 2013b; Othman & Kumar, 2009), has dis-
cussed different problems for various materi-
als with different effects using the (G-N) the-
ory. The fourth generalization of the coupled
theory of thermoelasticity was developed by
(Chandrasekharaiah, 1998; Tzou, 1995).

Initial stress in solids has a significant influ-
ence on the mechanical response of the mate-
rial from an initially stressed configuration
and has applications in geophysics, engineer-
ing structures, and the behavior of soft bio-
logical tissues. Initial stress arises from pro-
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cesses, such as manufacturing or growth, and
is present in the absence of applied loads.
(Montanaro, 1999) formulated the isotropic
thermoelasticity with hydrostatic initial
stress. (Ailawalia et al., 2009; Othman &
Song, 2007; Singh, 2008; Singh et al., 2006),
and many others have applied (Montanaro,
1999) theory to study the plane harmonic
waves in the context of generalized thermoe-
lasticity. (Othman & Atwa, 2012) investigate
the effect of initial stress under the Green-
Naghdi (G-N) theory for different cases in
thermoelasticity. (Ailawalia & Narah, 2009)
studied the effect of hydrostatic initial stress
and rotation in a generalized thermoelastic
medium. (Othman & Edeeb, 2016) studied
the Effect of Initial Stress on Generalized
Magneto-thermoelasticity Medium with Voids:
A Comparison of Different Theories. (Abd-
Elaziz et al., 2019) studied the On the Effect
of Thomson and Initial Stress in a Thermo-
Porous Elastic Solid under G-N Electromagnet-
ic Theory.

The theory of magneto-thermoelasticity is
concerned with the interacting effects of the
applied magnetic field on the elastic and
thermoelastic deformations of a solid body.
This theory has aroused much interest in
many industrial appliances, particularly in
nuclear devices where there exists a primary
magnetic field; various investigations are to
be carried out by considering the interaction
between magnetic, thermal, and strain fields.
Analyses of such problems also influence
various applications in biomedical engineer-
ing as well as in different geomagnetic stud-
ies. The development of the interaction of
electromagnetic field, the thermal field, and
the elastic field is available in many works
such as (Abd-Alla et al., 2003; Choudhuri &
Debnath, 1985; Othman & Song, 2006; Paria,
1966; Sherief & Helmy, 2002) studied the
effect of rotation on the reflection of magne-
to-thermoelastic waves under thermoelastici-
ty without energy dissipation with the (G-N)
theory of type II. (Othman & Kumar, 2009)
studied the reflection of magneto-

thermoelastic waves with temperature-
dependent properties in the context of gener-
alized thermoelasticity with (G-N) theory of
type II, i.e. without energy dissipation, and
other models of thermoelasticity. (Othman &
Atwa, 2011) studied the effect of the magnet-
ic field on the two-dimensional problem of
generalized thermoelasticity without energy
dissipation. (Othman et al., 2013a) studied
the generalized magneto-thermo-microstretch
elastic solid under a gravitational field with
energy dissipation. Recently (Othman et al.,
2013b) studied the effect of magnetic field
and rotation on generalized thermo-
microstretch elastic solid for a mode-I crack
using (G-N) theory. (Atwa, 2014) studied the
generalized magneto-thermoelasticity with two
temperatures and initial stress under Green—
Naghdi theory. (Abo-Dahab et al., 2017) stud-
ied A Two-Dimensional Problem with Rotation
and Magnetic Field in the Context of Four
Thermoelastic Theories, the normal-mode
analysis method was applied to obtain the
exact solutions for the physical problem.

FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

Consider an isotropic, homogeneous, linear,
thermally, and electrically conducting ther-
moelastic half-space (x >0, —0<y <o) .
The rectangular Cartesian coordinate sys-
tem (x,y,z), having originated on the sur-
facez =0, for the two dimensional problem
assume the dynamic displacement vector
as u =(u,v,0) . The surface (x =0) of the
half-space 1s taken to be traction-free and
subjected to mechanical and thermal loads.
All the considered functions are assumed to
be bounded asx — .. The whole body is at a
constant temperature7’, .. Consider also that

the orientation of the primary magnetic field
H =(0,0,H)1s towards the positive direction
of z—axis. Due to the application of this
magnetic field, an induced magnetic field /

and an induced electric field E. arise in the
medium .All the considered functions will
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depend on time 7 and the coordinates x and
y. So the displacement vector « has the
components

u, =u(x,z,t), u, =v(x,z,t), u, =0. (1)

The variation of the magnetic and electric
fields are a perfectly conducting slowly moving
medium and are given by Maxwell's equations:

curlh =J +¢)E, )

curl E =—pyh, (3)
E=—pyG H o)
divh =0. (5)

From the above equations, one can obtain
E=y,H,v,0,—  (6)
h = (ana_H() e)a (7)

J = (_ ha}’ ~ &0ty HOV’Oa hyx +30 Ko Hoib" (8)
The constitutive relations are given by
or
oy =2pe; +0;[Aey —ﬁg] —P(5; +w;) ©

1

1
€ zi(ui,j +uj,i ), W :E(uj’i U ), (10)

The equation of motion has the form

0]1,] +F; :ﬂ", l,j:1,2,3. (11)
Where F, is the Lorentz force and is given
by: F = (J xH ;. (12)

From equations (8) and (11), Lorentz force is
obtained
2

F=(F F, F)=(uHjey -

(13)

2772 2 2 y2-

eggHyt"  gey—egugHyv,0).
Substituting from equations (9) and (13) into
equation (11), the equations of motion can be
written as follows

P P
(y—E)Vzu +(i+,u+,uOH§ +3)e’x
(14)

2,2
gy My H

=BT, = p(l+ N

P P
(,u—E)Vzv +(/”t+u+yOHg +5)e,y
(15)

2 172
& H: -
_ T, = p(i+ 20070,

The equation of heat conduction has the form
KVT +k" VT ) - (16)

r =T kT I~ v

Where, o, are the stress tensor components,

e, are the strain tensor components, @;

rotation tensor, e =¢,, is the cubic dilatation,

1s the

0, is Kronecker's delta, u; is the displace-

ij
ment vector, A, u are the elastic constants, T
is the absolute temperature, T, is the tempera-
ture of medium in its natural state assumed to

be such that|(T —TO)/TO| <1,
&y» M, are the electric and magnetic permea-

bility respectively, J is the current density
vector, E is the induced electric field vector,
h is the induced magnetic field vector, H , is

a constant magnetic field, P is the initial
stress, A, u are Lame's constants,

B=0BA+2u)a,, a, is the coefficient of linear
thermal expansion, p is the density, C is the
specific heat at constant strain, & is the coeffi-

cient of thermal conductivity, k& " is the materi-
al constant characteristic of the theory, and

ox 2 oy 2 a2
When k&~ =0 then equation (16) reduces to

the heat conduction equation in (G-N) theory
(of type 1I),

V2

2 2
V=il+i] and V228—2+a—2.
ox oy ox oy

The components of stress tensor are

ou Ov ou
=M—+—)+2u——- BT —p, 17
Oxx (Gx Gy) ﬂax B p (17)

ou ov ov
=M—+—)+2u——-pBT —p, 18
O, (8x Gy) #Gy BT —p (18)
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ou OoOv
O, —ﬁv(a"‘a)_m_lﬁ (19)
_ w0V pov_ou
ny—/vl(aerax) 2(8x éy)' (20)

The basic governing equations of linear mag-
netic thermoelastic materials under influence of
the initial stress become

Do p. Oe or
- WVu+t(A+pu+=)—-p—
=Vt (@t pt )= f—

(21)
Oe o’u o’u
+ HZ__ 2H28 7= -—,
Ho oax Hy 008t2 p8t2
Oe oT
-2+ u+ By = po—
2 270y oy -
L
Oan 0006t2 atz’
KVT +k*§V2T
o°T e 23)
=pC, T+ BT, 25
Pre 5 ATy ot>
Where, h=-H,e

For the purpose of numerical evaluation, di-
mension variables are introduced.

T
W)= v, T'==,
c T,

*

XX

y oo .o
(x’y)_ l (x’y)’ O-xx = b
¢ u

o =2 o' =Yg
xy > T i’
H Hy (24)
. +2
!'=ot, f=ﬂ’ ay
P
2
a)l*:pCEcl , h’:i,
k H,

p=0Gr+2wae, p'=L,
Y7,

Equations (21) - (23), with the help of non-
dimensional variables (24) may be recast into
the dimensionless form after dropping primes

for convenience as:

e oT 0%u

VU+E ——E,—=FE,——, 25
lax 2 Ox 3 atz ( )
2
vy, g, 8 g OV (26)
oy 0 t?
£V +2, VT —62—T+g oe (27)
1 2 ot atg 3 t2 :
Here,
E _2/1+,u(2+p)+2y0H§
‘ u(2-p) ’
0. 2T, 2 Hy g el +2pe;
©ou@2-p) u-p)
K Ko, Vi
& =501, &=, &=—"—.
¢, pce ¢, pce pce

Where¢,, ¢,, and &;are the coupling constants.
Using the expression relating displacement
components u(x,y,t) and v(x,y,t) to the
scalar potential functions

v, (x,y,t) andy, (x,y,t) in dimensionless
form.

u—al/l’ +%,andv—%—% (28)

- ’

©ox oy oy ox

o=V, and (L_-Yy_v2,. . (29
oy Ox

By substituting from Eq. (29) in Egs. (25)-
(27), this yields

2

0
(1+E1)V2W1_E2T =E; at_zl//p (30)
2 o’
[V™ —E; &—211//2 =0, (31
0 T d%
£1V2T +825V2T :&—2+€38t—2v2¥/1. (32)
Then the components of stress tensor will be
ou Ov ou
=E,(—+—)+2——E,T - p, 33
O-xx 4(ax ay) ax 2 p ( )
ou Ov ov
o, =E(—+—)+2=—=—-ET —p, (34
»y 4(8x ay) 3y 2 P (34)
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ou
—E4(—+—) ET -p, (35)
oy
Ou ov
=20y PV Ky (36)
oy Ox 2 ox oy
Where E4:£,
7
NORMAL MODE ANALYSIS

The applied methodology to the system was the
normal mode analysis to obtain the exact ex-
pressions for the used physical variables. The
solution of the considered physical variables
can be decomposed in terms of the normal
mode as the following form

[u7V7Tal//19l//297Gl‘j ](xaya[) =
[V T w0y )0 ) expli(at +ax)),
Where [u*,v*,T*,wl*,l//z*,G;-](y) are the

amplitudes of the function, @ is the complex

(37)

time constant, i 2\/—_1 and a is the wave
number in x-direction.

Using Eq. (37) into Egs. (30)-(32), yields the
following,

(D’ ~F)y, -ET" =0, (38)
(D’ -F)wy, =0, (39)
F(D* —a®)y +(D? —F)T" =0. (40)
Where,

Fa* -Ey0’
D:i’ F =1+E,, Fzzu,
dy A
E &0°
' & +&0

Eliminating , (y) and T *(y) between Eqgs.
(38) - (40), yields the following fourth order
ordinary differential equations for w, (y) and

T"(v):

[D* —AD* +B1{w, (»),T " (»)} =0. (41)
Equation (41) can be factored as

(D* =k )D* =k )y 0).T ()} =0.  (42)

Where k’(n =1,2) are the roots of the charac-

teristic equation of Eq. (41),

A=F +F,+-FF,
B=FF,-FFa', m’=F,=a’-E,0.

The solution of Egs. (41) and (39) have the
form

2
v, () = ZGnefk”y, (43)
T (y) = ZLM e (44)
y, =Ge ™. (45)
Where G, (n =1,2,3) are some parameters and
2
-F
Lln — kn 2
F,

3

Substituting from Eqgs. (43)-(45) and (37) in
Egs. (28), (33)-(35) respectively, the displace-
ment and stress components take the form

2
u' = iaG.e™ -mGe™ e, (46)
2
V= (Z—k”Gne’k”y -iaG,e™ )e' ™", (47)
—(len e -b,Ge™ e ) —p, (48)
3 n

J; :(ZL G e—k} _I_bG e—my)e(wtﬂax)_p, (49)

2
o, = L,Ge" +b,Ge™ )e ", (50)
n=1

Where,
Ly, = (kf —aZ)E4 +2kf-E2L1n,

L, =L, =(k?—d’)E,—2a’ -E,L,,,
L,, =2al . by =2iam,
b, =(a2+m2)—%(m2—a2).

THE BOUNDARY CONDITIONS

In this section, the boundary conditions at
y =0, needs to be considered, in order to de-

termine the constantsG, (n=1,2,3):
(1) The mechanical boundary conditions

O-yy =_Ple(a)t+illx)’ O-Xy :O’ (51)
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(2) The thermal boundary condition that the
surface of the half-space is subjected to

T = Pyel@ i), (52)
Where P, is the magnitude of the applied force

on the half-space and P, is the applied constant

temperature to the boundary.
Using the expressions of the variables into the
above boundary conditions (51), (52) produces,

2
Y Ly,G, +bGy =—p), (53)
n=l
2
> L4,G, +b,Gy =0, (54)
n=1
3
ZLlnGn =P, (55)

n=1

Invoking boundary conditions (53)-(55) at the
surface y =0 of the plate, yields a system of
three equations. After applying the inverse of
the matrix method, one can get the values of

the three constants G, (n =1,2,3).

G, Ly, Ly, b, P
{G2 =Ly Ly b, { 0 J (56)
G, P

L, L, 0

Hence, obtaining the expressions for the dis-
placements, the temperature distribution, and
the other physical quantities of the plate sur-
face.

A=217x10" N /m?,

1=3278x10" N /m*®

K =1.7x10*W /m deg,

a, =1.78x10° N /m?,

p=174x10° kg /m°,

C, =1.04x10’J /kgdeg, T,=298K,
B=2.68x10°N /m*deg, « =3.58x10"/s.
The Magnetic field parameters were

H,=10", Uy =4rx107 H/M,
g, =8.85418717x10 " F /M.

The comparisons were carried out for

x=05 =03 w={,+id,, ¢,=-0.7,
& =01 p =-01 1p,=02, a=05
0<y <25.

The comparisons have established for two cas-
es
(1) With and without magnetic field

[(H,=10%,0), p=1 t=03].
(i1) With and without initial stress

[(p=1,0), H,=10°, ¢t=03].

The above numerical technique, was used for
the distribution of the real parts of the dis-
placement components u# and v, the tempera-

ture distribution T, the stress components
o, »0, ando,, with the distance for (G-N)

theory of both types II and III with and without
the magnetic field (H, =0, 10%) during p =1,
and ¢ = 0.3 in figures (1-6).

Figures (7-12) clarify the distribution of the
real parts of the displacement components u
and v , the temperature 7 , the stress compo-
nents with the distance y for (G-N) theory of
both types II and III with and without the initial

stress (p =1, 0) during H, =10°, and # =0.3.
Figures (1-12) are graphically represented
changes in the behavior of the physical quanti-
ties against distance y in 2D.

Fig. 1 depicts that the distribution of the verti-
cal displacement “>in the context of both types
II and III, always begins from positive values

H, =100

for and begins from negative val-

108
ues for H, =10 of type III. It was observed

that the displacement ¥ increases with the in-
crease of the magnetic field for y > 0. The dis-
tributions of ¥ is directly proportional to the
magnetic field.

© 2020 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.

ISSN: online 2617-2186 print 2617-2178



Al-Mukhtar Journal of Sciences 35 (4): 316-328, 2020

G-N II, HO=10%
G-N 1Il, HO=10° ]
G-N II, HO=0
G-N I, HO=0  H

5 10 15 20 25
y

Fig.(1) Horizontal displacement distribution # in the
absence and presence of the magnetic field.

Fig. 2 depicts the displacement distribution
v,in the context of both types II and III for

H,=10%,0 it was observed that the distribu-
tions of v decrease with the increase of the
magnetic field for y > 0. The distributions of

v are inversely proportional to the magnetic
field.

G-N I, HO=10%
0.05 - * G-N I, HO=108 [|
G-N II, HO=0
0.04 \ G-N I, Ho=0 H
0.03}- 4
> 0.02| \ B
0.01 \. -
<
07/ \’_;;j;j#
0.01 T -
0.02 -
o 5 10 15 20 25

Fig.(2) Vertical displacement distribution V in the ab-
sence and presence of the magnetic field.

Fig. 3 explains that the distribution of tempera-
ture T begins from a positive value (which is
the same point) in case of H, =0,10°, in the
context of both types II and III of (G-N), and
takes the form of a wave until it develops to
Zero.

0.2

G-N I, HO=10%
* G-N Ill, HO=10%
G-N I, HO=0
G-N lll, HO=0

Fig. (3) Thermodynamic temperature distribution
T in the absence and presence of magnetic field.

Fig. 4 determines the distribution of the stress
component o, in the case of H, =10°, and
H, =0, in the context of both types II and IIL
It was noted that the distribution of o, de-

creases with the
field value for y > 0.

o

increase of the magnetic

-0.2 B

-0.4f B

G-N Il, HO=10%
-0.6 G-N 1, HO=10% H

x G-N II, HO=0

G-N Ill, HO=0

-0.81

Ak — — —

-1.2- -

-1.4

o 5 10 15 20 25
Yy

Fig. (4) Distribution of stress component 0 in the ab-

sence and presence of the magnetic field.

Fig. 5 shows the distribution of the stress com-
ponent o, in the case of H, =10%,0, in the

context of both types II and III. It was observed
that the distribution of o, decreases with the

increase of the magnetic field value for y > 0.

o

-0.2 -

-0.4 G-N I, HO=10%

© G-N I, HO=10%
G-N I, HO=0
G-N 1, Ho=0

0.6

-0.8 -

S — —

12k 4

1.4

o 5 10 15 20 25
v

Fig. (5) Distribution of stress component o, in the ab-

sence and presence of the magnetic field.

Fig. 6 explains the distribution of stress com-
ponento,, which begins from zero in the case

of H,=10°,H,=0, in the context of both

types II and III. It was observed that the mag-
netic field has an effect ono,,, while the dis-

tribution of o increases with the increase of

the magnetic field value for y > 0.
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G-N I, Ho=10%
© G-N I, Ho=10%
''''' G-N II, HO=0
G-N I, HO=0

5 10 15 20 25
y

Fig. (6) Distribution of stress component o, in the

absence and presence of magnetic field.

Figs. 7 and 8 show the distribution of dis-
placement components u and v in the case of
p =land p =0, in the context of both types II
and III. It was noted that the distributions of
u and v respectively increase with the increase
of the initial stress for y > 0. The distributions
of u and v are directly proportional to the ini-
tial stress.

G-N II,P=1
G-N I, P=1

GNu P=0 ]
G-N m,P=0

Fig. (7) Distribution of the displacement compo-
nenty with and without initial stress.

G-NI,P=1
- G-N I, P=1

G-N1Il, P=0 |
G-N lIl,P=0

Fig. (8) Distribution of the displacement component
v with and without initial stress.

Figs. 9 explains the distribution of temperature
T which begins from zero in the case of
p=1andp =0, in the context of both types
IT and III. It was noticed that T decreases with
the increase of the initial stress for y > 0.

G-N II,P=1
G-N I, P=1
G-N I, P=0
G-N,P=0 |

o 5 10 15 20 25

Fig. (9) Temperature distribution 7" with and without
initial stress.

Figs. 10 and 11 depict the behavior of o, and
o,, in the context of both types II and III
which always begin from positive values
forp =1, 0, and begin from negative for p =1
in type II. It was observed that stress compo-
nents o,, and o, increase with the increase

of the initial stress for y > 0.

0.2

o~ — U —

0.2 -

0.4l ———G-NuP=1 |

0.6 G-N L.P=0 ||

o8 4

e e — S

-1.2

o 5 10 15 20 25
y

Fig. (10) Distribution of the stress component

O, With and without initial stress.
0.2
or e Ot U UU—
-0.2 -
-0.4~ ————G-N I,P=1
= - G-N I, P=1
=] G-N I, P=0
0.6 G-N II,P=0
0.8 -
Lk S — B
-1.2
o 5 10 15 20 25

y

Fig. (11) Distribution of the stress component
o, with and without initial stress.
Figs. 12 demonstrates that the distribution of
the stress component o, , in the context of
both types II and III begins from zero and satis-
fies the boundary conditions at p =1, and
p = 0. In the context of both types II and III. It

was noted that the stress component of o,

© 2020 The Author(s). This open access article is distributed under a CC BY-NC 4.0 license.
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increases with the increase of the initial stress
values for y > 0.

0.02

0.01
o
-0.01
-0.02
= -0.03

-0.04

-0.05

G-N II,P=1
- G-N I, P=1
-0.07 |- ——— G-N I, P=0

G-N II,P=0

-0.06 -

-0.08

o 5 10 15 20 25
y

Fig. (12) Distribution of the stress component o, with

and without initial stress.

3D curves are representing y = 0the complete
relation between the physical variables and
both of the components of the distance as
shown in Figures (13-18) in the presence of the
magnetic field /, =10° and the initial stress
proprieties p =1, at £ =0.3 in the context of
(G-N) theory of type III. These figures are very
important in studying the dependence of these
physical quantities on the vertical component
of the distance. The obtained curves are highly
dependent on the vertical distance from the
origin, and all the physical quantities are mov-
ing in the wave propagation.

u
B
oc® A N O N M O

Fig. 13 (3D) Horizontal component of displacement u
against both components of distance based on G-N type

Mlat H, =10* and P =1.

10—

-10
10

)

Fig. 14 (3D) Vertical component of displacement v
against both components of distance based on G-N type

Mat H,=10"and P =1.

Fig. 15 (3D) Thermodynamic temperature distribution
T against both components of distance based on G-N

type I at H =10° and P =1.

Fig. 16 (3D) Distribution of the stress component
o, against both components of distance based on G-N

type [ll at H =10* and P =1.
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Fig. 17 (3D) Distribution of the stress component
Oy against both components of distance based on G-N

type Il at /1, =10* and P =1.

CONCLUDING REMARKS

By comparing the figures obtained under the
(G-N) theory in the context of both types II and
III, important phenomena are observed: the
values of all physical quantities converge to
zero with increasing distance y, all functions

are continuous, and all physical quantities satis-
fy the boundary conditions. Also, analysis of
the components of displacement, stresses, the
temperature distribution due to the initial stress,
and the magnetic field for thermoelastic solid
with magnetic field under the initial stress is an
interesting problem of mechanics. Normal
mode analysis technique has been used, which
applies to a wide range of problems in ther-
moelasticity. The value of all physical quanti-
ties converges to zero, with an increase in dis-
tance and all functions are continuous y. It was
observed that the magnetic field and initial
stress have a significant role in all considered
physical quantities, as the amplitudes of these
quantities vary (increasing or decreasing) with
the increase of the initial stress and magnetic
field.
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