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Abstract: The normal mode analysis method was used to study the effect of both the initial stress 

and the magnetic field on a thermally elastic body. This method is used to obtain the exact expres-

sions for the considered variables. Some particular cases are also discussed in the context of the 

problem. The generalized thermal elasticity equations were reviewed under the influence of the 

basic initial stress and the magnetic field using the theory (Green-Naghdi) of the second and third 

types (the second type with no energy dispersion and the third type with energy dispersion). The 

different physical quantities were illustrated in the presence and absence of both the initial stress 

and the magnetic field. The results of this research show the extent of difference between the se-

cond and third types of Green and Naghdi's theory. All results and figures were obtained using 

(MATLAB R2013a) program. 
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INTRODUCTION 

The generalized theory of thermoelasticity is 

one of the modified versions of the classical 

uncoupled and coupled theory of thermoelas-

ticity and has been developed in order to re-

move the paradox of physical impossible 

phenomena of the infinite velocity of thermal 

signals in the classical coupled thermoelastic-

ity. (Hetnarski & Ignaczak, 1999) examined 

five generalizations of the coupled theory of 

thermoelasticity. The first generalization was 

proposed by (Lord & Shulman, 1967), which 

involves one relaxation time for a thermoe-

lastic process. The second generalization is 

due to (Green & Lindsay, 1972) which takes 

into account two relaxation times. The third 

generalization of the coupled theory of ther-

moelasticity was introduced by (Green & 

Naghdi, 1993), who developed different theo-

ries labeled type I, type II, and type III. The 

(G-N I) theory in the linearized theory is 

equivalent to the classical coupled thermoe-

lasticity theory. The (G-N II) theory does not 

admit energy dissipation, while the third (G-

N III) theory admits dissipation of energy. 

The heat flux is a combination of type I and 

type II. Both type II and type III theories im-

ply a finite speed of propagation for heat 

waves. (Bargmann & Steinmann, 2006) in-

vestigated the (G-N) approach for modeling 

the phenomenon of second sound.(Othman & 

Atwa, 2011; Othman & Atwa, 2012; Othman et 

al., 2013b; Othman & Kumar, 2009), has dis-

cussed different problems for various materi-

als with different effects using the (G-N) the-

ory. The fourth generalization of the coupled 

theory of thermoelasticity was developed by 

(Chandrasekharaiah, 1998; Tzou, 1995).   

Initial stress in solids has a significant influ-

ence on the mechanical response of the mate-

rial from an initially stressed configuration 

and has applications in geophysics, engineer-

ing structures, and the behavior of soft bio-

logical tissues. Initial stress arises from pro-
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cesses, such as manufacturing or growth, and 

is present in the absence of applied loads. 

(Montanaro, 1999) formulated the isotropic 

thermoelasticity with hydrostatic initial 

stress. (Ailawalia et al., 2009; Othman & 

Song, 2007; Singh, 2008; Singh et al., 2006), 

and many others have applied (Montanaro, 

1999) theory to study the plane harmonic 

waves in the context of generalized thermoe-

lasticity. (Othman & Atwa, 2012) investigate 

the effect of initial stress under the Green-

Naghdi (G-N) theory for different cases in 

thermoelasticity. (Ailawalia & Narah, 2009) 

studied the effect of hydrostatic initial stress 

and rotation in a generalized thermoelastic 

medium. (Othman & Edeeb, 2016) studied 

the Effect of Initial Stress on Generalized 

Magneto-thermoelasticity Medium with Voids: 

A Comparison of Different Theories. (Abd-

Elaziz et al., 2019) studied the On the Effect 

of Thomson and Initial Stress in a Thermo-

Porous Elastic Solid under G-N Electromagnet-

ic Theory.  

The theory of magneto-thermoelasticity is 

concerned with the interacting effects of the 

applied magnetic field on the elastic and 

thermoelastic deformations of a solid body. 

This theory has aroused much interest in 

many industrial appliances, particularly in 

nuclear devices where there exists a primary 

magnetic field; various investigations are to 

be carried out by considering the interaction 

between magnetic, thermal, and strain fields. 

Analyses of such problems also influence 

various applications in biomedical engineer-

ing as well as in different geomagnetic stud-

ies. The development of the interaction of 

electromagnetic field, the thermal field, and 

the elastic field is available in many works 

such as (Abd-Alla et al., 2003; Choudhuri & 

Debnath, 1985; Othman & Song, 2006; Paria, 

1966; Sherief & Helmy, 2002) studied the 

effect of rotation on the reflection of magne-

to-thermoelastic waves under thermoelastici-

ty without energy dissipation with the (G-N) 

theory of type II. (Othman & Kumar, 2009) 

studied the reflection of magneto-

thermoelastic waves with temperature-

dependent properties in the context of gener-

alized thermoelasticity with (G-N) theory of 

type II, i.e. without energy dissipation, and 

other models of thermoelasticity. (Othman & 

Atwa, 2011) studied the effect of the magnet-

ic field on the two-dimensional problem of 

generalized thermoelasticity without energy 

dissipation. (Othman et al., 2013a) studied 

the generalized magneto-thermo-microstretch 

elastic solid under a gravitational field with 

energy dissipation. Recently (Othman et al., 

2013b) studied the effect of magnetic field 

and rotation on generalized thermo-

microstretch elastic solid for a mode-I crack 

using (G-N) theory. (Atwa, 2014) studied the 

generalized magneto-thermoelasticity with two 

temperatures and initial stress under Green–

Naghdi theory. (Abo-Dahab et al., 2017) stud-

ied A Two-Dimensional Problem with Rotation 

and Magnetic Field in the Context of Four 

Thermoelastic Theories, the normal-mode 

analysis method was applied to obtain the 

exact solutions for the physical problem. 

FORMULATION OF THE PROBLEM 

AND BASIC EQUATIONS 

Consider an isotropic, homogeneous, linear, 

thermally, and electrically conducting ther-

moelastic half-space ( 0, )x y     . 

The rectangular Cartesian coordinate sys-

tem ( , , )x y z , having originated on the sur-

face 0z  , for the two dimensional problem 

assume the dynamic displacement vector 

as ( , ,0)u u v . The surface ( 0)x  of the 

half-space is taken to be traction-free and 

subjected to mechanical and thermal loads. 

All the considered functions are assumed to 

be bounded as .x  . The whole body is at a 

constant temperature
0

.T . Consider also that 

the orientation of the primary magnetic field 

0
(0, 0, )HH is towards the positive direction 

of z  axis. Due to the application of this 

magnetic field, an induced magnetic field h  

and an induced electric field .E  arise in the 

medium .All the considered functions will 
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depend on time t and the coordinates x and 

.y So the displacement vector u  has the 

components 

( , , ),xu u x z t    ( , , ),yu v x z t   0.zu     (1) 

The variation of the magnetic and electric 

fields are a perfectly conducting slowly moving 

medium and are given by Maxwell's equations: 

0curl + ,h J E                                         (2) 

0curl ,μ E h                                             (3) 

0= ( × ),μE u H                                          (4) 

div = 0.h                                                        (5) 

From the above equations, one can obtain 
.

0 ( ,0, ),0= H v u E      (6) 

(0,0, ),0= H eh          (7) 

 
..

,y 0 0 0 ,x 0 0 0= ( , 0, + ).h ε μ H v h ε μ H u J (8)  

The constitutive relations are given by 

2 [ ] ( )
ij ij ij kk ij ij

T
e e P

x
      


    


     (9) 

, , , ,

1 1
( ), ( ),

2 2ij i j j i ij j i i j
e u u u u     (10) 

The equation of motion has the form 

, , , 1,2,3.ji j i iF u i j   
  
          (11) 

   Where 
i

F  is the Lorentz force and is given 

by:    0 i( ) .iF  J H                               (12) 

From equations (8) and (11), Lorentz force is 

obtained 
2

,x0 0

..2 2 2 2 2
,y0 0 0 0 0 0 0 0

= ( , , ) = (

, ).

x y z

v

F F F μ H e

ε μ H u μ H e ε μ H ,0





F
   (13) 

Substituting from equations (9) and (13) into 

equation (11), the equations of motion can be 

written as follows 

2 2
,0 0

2 2
0 0 0

,

( ) ( )
2 2

(1 ) ,

x

x

P P
u H e

H
T u

   

 
 



     

  

       (14) 

..

2 2
,0 0

2 2
0 0 0

,

( ) ( )
2 2

(1 ) .

y

y

P P
v H e

H
T v

   

 
 



     

  

     (15) 

The equation of heat conduction has the form 
2

0
* 2 + .EK T k T ρC T T e              (16) 

  Where, ij
  are the stress tensor components, 

ij
e are the strain tensor components, ij

  is the 

rotation tensor, 
kk

e e  is the cubic dilatation, 

ij
  is Kronecker's delta,  

i
u  is the displace-

ment vector, ,   are the elastic constants, T  

is the absolute temperature, 
0T  is the tempera-

ture of medium in its natural state assumed to 

be such  that
0 0( ) / 1,T T T   

0 0, 
 
are the electric and magnetic permea-

bility respectively,
 
J  is the current density 

vector,
 
E  is the induced electric field vector, 

h  is the induced magnetic field vector, 
0H  is 

a constant magnetic field, P  is the initial 

stress, ,   are Lame's constants, 

(3 2 ) ,t     t  is the coefficient of linear 

thermal expansion,   is the density, EC  is the 

specific heat at constant strain, k  is the coeffi-

cient of thermal conductivity, *k  is the materi-

al constant characteristic of the theory, and 
2 2 2

2
2 2 2

.
x y z

  
   

    

When 
* 0k   then equation (16) reduces to 

the heat conduction equation in (G-N) theory 

(of type II),       

 

.i j
x y

 
  

 
   and   

2 2
2

2 2
.

x y

 
  

 
 

The components of stress tensor are 

( ) 2 ,xx
u u

T p
x y x


    

  
   

  
     (17) 

( ) 2 ,yy

u
T p

x y y

 
    

  
   

  
      (18) 
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( ) ,zz

u
T p

x y


   

 
  

 
                     (19) 

( ) ( ).
2

xy

u p u

y x x y

 
 

   
   

   
            (20) 

The basic governing equations of linear mag-

netic thermoelastic materials under influence of 

the initial stress become 

 

2

2
2
0 0 2 2

( ) + ( )
2 2

,
2

p p e T
u

x x

e u u

x t t

   

   

 
   

 

  
 

  



2 2
0 0 0+ - =

               (21) 

2

2
2
0 0 2 2

( ) + ( )
2 2

,
2

p p e T

y y

e

y t t

    

 
   

 
   

 

  
  

  



2 2
0 0 0+ -

               (22) 

2 2

2

0

* 2

+ .
2 2

E

K T k T
t

T e
ρC T

t t



  



 


 

                     (23) 

  

Where,   0h H e 
 

For the purpose of numerical evaluation, di-

mension variables are introduced.        

 

1

1 0

'1

'

0

* 2

1 1

2

* 1

1

0

(u , ) (u ), ' ,

( ) ( ), ,

, ,

2
, ,

, ,

 (3 2 ) , .

xx

xx

0

xy ij

xy ij ij

E

t

T
= , T

c T

x , y' = x, y
c

σ
σ = σ ,

t' = t c

C c h
h

k H

p
p'


 

 







 

 







   






  

 






 

  

 (24) 

Equations (21) - (23), with the help of non-

dimensional variables (24) may be recast into 

the dimensionless form after dropping primes 

for convenience as:      

  
2

2
1 2 3 2

+ ,
e T u

u E E E
x x t

  
 

  
=        (25) 

2
2

1 2 3 2
+ ,

e T
E E E

y y t




  


  
=           (26) 

2 2
1 2

2 2

3

T
+ .

2 2

e
T T

t t t
  

  
   

  
     (27) 

 Here, 

2

0 0

1

2 2 2

0 0 0 0 1 1

2 3

2 (2 ) 2
,

(2 )

2 2 2
, ,

(2 ) (2 )

p
E

p

T c c
E E

p p

  



   

 

   




 
 

 

 

*

1

1 2 32 2

1 1

, , .
KK

cec ce c ce

 
  

 
    

Where 1 , 2 , and 3 are the coupling constants. 

Using the expression relating displacement 

components u(x , y ,t ) and v (x , y ,t ) to the 

scalar potential functions 

 (x , y ,t ) 1 and  (x , y ,t ) 2 in dimensionless 

form. 

,1 2u
x y

  
 

 
and ,1 2

y x

 


 
 

 
      (28)                                                          

2 ,1e    and  2( ) .2

u

y x




 
  

 
      (29)           

   (29) 

 By substituting from Eq. (29) in Eqs. (25)- 

(27), this yields 
2

2
1 1(1 ) ,1 2 3 2

E E T E
t

 


   


                      (30)                                                                                  

2

2
2

2
[ ] = 0,3E

t



 


                       (31)                                                                              

2 2 2
1 2

2 2

3 1

T
+ .

2 2

e
T T

t t t
   

  
    

  
         (32)                                                                       

 Then the components of stress tensor will be 

4 2( ) 2 ,xx

u u
σ E E Τ - p

x y x

  
  

  
=             (33) 

4 2( ) 2 ,yy

u
σ T p

x y y

 
 

  
   

  
=        (34)      
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4 2( ) ,zz

u
T p

x y


   

 
  

 
                  (35) 

( ) ( ).
2

xy

u p u

y x x y

 


   
   

   
                (36)  

Where          4 ,





  

NORMAL MODE ANALYSIS 

The applied methodology to the system was the 

normal mode analysis to obtain the exact ex-

pressions for the used physical variables. The 

solution of the considered physical variables 

can be decomposed in terms of the normal 

mode as the following form 

1 2

* * * * * *
1 2

[ , , , , , , ]( , , )

[ , , , , , ]( )exp[ ( )],

ij

ij

u T x y t

u T y i t ax

   

    




    (37) 

Where 
* * * * * *

1 2[ , , , , , ]( )iju T y    are the 

amplitudes of the function,   is the complex 

time constant, 1i    and  a  is the wave 

number in x-direction. 

Using Eq. (37) into Eqs. (30)-(32), yields the 

following, 

3

2 * *
2(D ) - 0,1F F =                             (38) 

2

4(D ) 0*

2F ψ = ,                                     (39) 

2 2 * 2 *
5 1 6(D ) + (D ) 0.F a F Τ =           (40) 

Where, 
2 2

1 3
1 1 2

1

d
D = , 1 , ,

dy

F a E
F E F

F


  

 
2

2 2 32
3 4 3 5

1 1 2

, , ,
E

F F a E F
F

 


  
   


 

Eliminating  *

1 ( )y  and  *( )Τ y  between Eqs. 

(38) - (40), yields the following fourth order 

ordinary differential equations for *

1 ( )y  and  

*( )Τ y :

 

 
4 2 * *

1[D D ]{ ( ), ( )} 0.A B y Τ y             (41) 

   Equation (41) can be factored as 
2 2 2 2 * *

1 2 1(D )(D ){ ( ), ( )} 0.k k y T y        (42) 

Where 2( 1,2)nk n   are the roots of the charac-

teristic equation of Eq. (41), 

2 6 3 5

2 2 2 2

2 6 3 5 4 3

,

, .

A F F F F

B F F F F a m F a E 

   

    
 

The solution of Eqs. (41) and (39) have the 

form 
2

1

n y*

1 n

n=

k
(y) = G e , 

                                     (43) 

2
*

1

n y

1n n

n

k

=

T (y) = L G e ,


                                   (44)         

.*

2 3

myψ =G e                                              (45) 

Where ( 1,2,3)nG n   are some parameters and 

    2

2

1

3

.n

n

k F
L

F


  

Substituting from Eqs. (43)-(45) and (37) in 

Eqs. (28), (33)-(35) respectively, the displace-

ment and stress components take the form 
2

* ( )

1

( -nk y y t+iax

3

m

n

n=

u = i aG e m G e )e ,      (46) 

2
* ( )

1

( -nk y y t+iax

n n 3

n=

m= k G e i aG e )e ,  
  

(47) 

2
* i( )

1

( - ) ,n y my t+ax

xx 2n n 1 3

k

n=

= L G e b G e e p         (48) 

2
* ( )

1

( ) ,n y my t+iax

yy 3n n 1 3

k

n=

= L G e +b G e  e p       (49) 

2
* ( )

1

( ) ,n y my t+iax

xy 4n n 2 3

n=

k
= L G e b G e  e      (50) 

Where, 

    
2 2

2n 1n( 2 ,2
n 4 n 2L = k a )E k - E L 

         

         
2

2n 1n( 2 ,3n
2 2

n 4 2L = L = k a )E a - E L 
 

2 , 2ia m,4n 1n
L = ia b =k  

2 2 2 2( ) ( ).
2

2

p
b = a m m a  

 

THE BOUNDARY CONDITIONS 

In this section, the boundary conditions at 

0,y   needs to be considered, in order to de-

termine the constants n (n 1,2,3)G  : 

(1)  The mechanical boundary conditions 

( + i )
 ,      = 0,t ax

yy 1 xyσ P e σ                (51) 
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(2)   The thermal boundary condition that the 

surface of the half-space is subjected to 
( +i )

2 .t axT = P e 
                                      (52) 

Where 1P is the magnitude of the applied force 

on the half-space and 2P is the applied constant 

temperature to the boundary. 

Using the expressions of the variables into the 

above boundary conditions (51), (52) produces, 
2

3 n n 1 3 1

1

,
n

L G b G p


                                      (53) 

2

4 n n 1 3

1

0,
n

L G b G


                                        (54) 

2

3

1n n

n 1

.
=

L G = P                                                (55)  

Invoking boundary conditions (53)-(55) at the 

surface 0y   of the plate, yields a system of 

three equations. After applying the inverse of 

the matrix method, one can get the values of 

the three constants n (n 1,2,3).G   

 
1

1 1

2

23

31 32 1

0
41 42 2

11 12 0

G P

G

PG

L L b

L L b

L L



   
   

    
  
  

 
 
 
 
 

.       (56)  

 

Hence, obtaining the expressions for the dis-

placements, the temperature distribution, and 

the other physical quantities of the plate sur-

face. 

10 22.17 10 / ,N m    
10 23.278 10 /N m    

21.7 10 / deg,K W m    
5 21.78 10 / ,t N m         

3 31.74 10 / ,kg m     
    

31.04 10 / deg,EC J kg  0 298 ,T K       

6 22.68 10 / deg,N m       * 11

1 3.58 10 / .s  
 

The Magnetic field parameters were 
8

0 10 ,H 
   

7

0 4 10 / ,H M       
12

0 8.85418717 10 / .F M    

The comparisons were carried out for 

0.5,x     0.3,t     0 1,i       0 0.7,      

1 0.1,    1 0.1,p  
  2p 0.2,   0.5,a   

0 25.y   
The comparisons have established for two cas-

es 

(i) With and without magnetic field
   

       
[ 8

0( 10 , 0), 1, 0.3H p t   ]. 

(ii) With and without initial stress 
   

  
     [ 8

0( 1, 0), 10 , 0.3p H t   ]. 

The above numerical technique, was used for 

the distribution of the real parts of the dis-

placement components u and ,  the tempera-

ture distribution ,T  the stress components 

xx , yy and xy  with the distance for (G-N) 

theory of both types II and III with and without 

the magnetic field ( 8

0 0, 10H  ) during 1,p   

and 0.3t   in figures (1-6). 

Figures (7-12) clarify the distribution of the 

real parts of the displacement components u 

and v , the temperature T  , the stress compo-

nents with the distance y for (G-N) theory of 

both types II and III with and without the initial 

stress ( 1, 0p  ) during
 

8

0 10 ,H   and 0.3t  . 

Figures (1-12) are graphically represented 

changes in the behavior of the physical quanti-

ties against distance y in 2D. 

Fig. 1 depicts that the distribution of the verti-

cal displacement ,u in the context of both types 

II and III, always begins from positive values 

for 
8

0 10 ,0H 
 and begins from negative val-

ues for 
8

0 10H 
 of type III. It was observed 

that the displacement u  increases with the in-

crease of the magnetic field for y > 0. The dis-

tributions of u is directly proportional to the 

magnetic field. 
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G-N II, H0=0

 G-N III, H0=0

 

Fig.(1) Horizontal displacement distribution u in the 

absence and presence of the magnetic field. 

 

Fig. 2 depicts the displacement distribution 

,v in the context of both types II and III for 
8

0 10 ,0H   it was observed that the distribu-

tions of v decrease with the increase of the 

magnetic field for y > 0. The distributions of 

v are inversely proportional to the magnetic 

field. 

0 5 10 15 20 25
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

y

v

 

 

G-N II, H0=108

 G-N III, H0=108

G-N II, H0=0

 G-N III, H0=0

 
Fig.(2) Vertical displacement distribution v in the ab-

sence and presence of the magnetic field. 

 

Fig. 3 explains that the distribution of tempera-

ture T begins from a positive value (which is 

the same point) in case of 8

0 0,10 ,H    in the 

context of both types II and III of (G-N), and 

takes the form of a wave until it develops to 

zero. 

0 5 10 15 20 25
-0.05

0

0.05

0.1

0.15

0.2

y

T

 

 

G-N II, H0=108

 G-N III, H0=108

G-N II, H0=0

 G-N III, H0=0

 
Fig. (3) Thermodynamic temperature distribution 

T in the absence and presence of magnetic field. 

Fig. 4 determines the distribution of the stress 

component xx in the case of 8

0 10H  , and 

0 0H  ,  in the context of both types II and III. 

It was noted that the distribution of xx de-

creases with the    increase of the magnetic 

field value for y > 0. 

0 5 10 15 20 25
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

y

 xx

 

 

G-N II, H0=108

 G-N III, H0=108

G-N II, H0=0

 G-N III, H0=0

Fig. (4) Distribution of stress component xx in the ab-

sence and presence of the magnetic field. 

 

Fig. 5 shows the distribution of the stress com-

ponent 
yy in the case of 8

0 10 ,0H  , in the 

context of both types II and III. It was observed 

that the distribution of 
yy decreases with the 

increase of the magnetic field value for y > 0. 
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-1.4
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-1

-0.8

-0.6

-0.4
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0

y

 yy
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Fig. (5) Distribution of stress component 

xy in the ab-

sence and presence of the magnetic field. 

 

Fig. 6 explains the distribution of stress com-

ponent
xy which begins from zero in the case 

of 8

0 10H  , 0 0H  , in the context of both 

types II and III. It was observed that the mag-

netic field has an effect on
xy , while the dis-

tribution of 
xy increases with the increase of 

the magnetic field value for y > 0. 
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  Fig. (6) Distribution of stress component 

xy in the 

absence and presence of magnetic field. 

 

Figs. 7 and 8 show the distribution of dis-

placement components u and v  in the case of 

1p  and 0p  , in the context of both types II 

and III. It was noted that the distributions of 

u and v respectively increase with the increase 

of the initial stress for y ˃ 0. The distributions 

of u and v are directly proportional to the ini-

tial stress. 
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      Fig. (7) Distribution of the displacement compo-

nentu  with and without initial stress. 
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      Fig. (8) Distribution of the displacement component     

                    v with and without initial stress. 

 

Figs. 9 explains the distribution of temperature 

T which begins from zero in the case of 

1p   and 0p  , in the context of  both types 

II and III. It was noticed that T decreases with 

the increase of the initial stress for y ˃ 0. 
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Fig. (9) Temperature distribution T with and without 

initial stress. 

 

Figs. 10 and 11 depict the behavior of xx and 

yy in the context of both types II and III 

which always begin from positive values 

for 1, 0p  , and begin from negative for 1p   

in type II. It was observed that stress compo-

nents
 xx  and 

yy  increase with the increase 

of the initial stress for y ˃ 0. 
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G-N II,P=1

 G-N III, P=1

G-N II, P=0

 G-N III,P=0

 
           Fig. (10) Distribution of the stress component 

xx  with and without initial stress. 
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     Fig. (11) Distribution of the stress component 

yy with and without initial stress. 

Figs. 12 demonstrates that the distribution of 

the stress component ,xy  in the context of 

both types II and III begins from zero and satis-

fies the boundary conditions at 1,p   and 

0p  . In the context of both types II and III. It 

was noted that the stress component of ,xy  
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increases with the increase of the initial stress 

values for   y ˃ 0. 
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Fig. (12) Distribution of the stress component 

xy  with 

and without initial stress. 

 

3D curves are representing 0y  the complete 

relation between the physical variables and 

both of the components of the distance as 

shown in Figures (13-18) in the presence of the 

magnetic field 8

0 10H    and the initial stress 

proprieties 1,p   at 0.3t   in the context of 

(G-N) theory of type III. These figures are very 

important in studying the dependence of these 

physical quantities on the vertical component 

of the distance. The obtained curves are highly 

dependent on the vertical distance from the 

origin, and all the physical quantities are mov-

ing in the wave propagation.  
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Fig. 13 (3D) Horizontal component of displacement u  

against both components of distance based on G-N type 

III at
  

8

0 10H   and 1.P    
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Fig. 14 (3D) Vertical component of displacement v  

against both components of distance based on G-N type 

III at
  

8

0 10H   and 1.P   
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 Fig. 15 (3D) Thermodynamic temperature distribution 

T against both components of distance based on G-N 

type III at
  

8

0 10H   and 1.P   
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Fig. 16 (3D) Distribution of the stress component 

yy against both components of distance based on G-N 

type III at
  

8

0 10H   and 1.P   
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Fig. 71 (3D) Distribution of the stress component 

xy against both components of distance based on G-N 

type III at
 

8

0 10H   and 1.P   

 

 

CONCLUDING REMARKS 

 

By comparing the figures obtained under the 

(G-N) theory in the context of both types II and 

III, important phenomena are observed: the 

values of all physical quantities converge to 

zero with increasing distance y, all functions 

are continuous, and all physical quantities satis-

fy the boundary conditions. Also, analysis of 

the components of displacement, stresses, the 

temperature distribution due to the initial stress, 

and the magnetic field for thermoelastic solid 

with magnetic field under the initial stress is an 

interesting problem of mechanics. Normal 

mode analysis technique has been used, which 

applies to a wide range of problems in ther-

moelasticity. The value of all physical quanti-

ties converges to zero, with an increase in dis-

tance and all functions are continuous y. It was 

observed that the magnetic field and initial 

stress have a significant role in all considered 

physical quantities, as the amplitudes of these 

quantities vary (increasing or decreasing) with 

the increase of the initial stress and magnetic 

field. 
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 أولي في ظلطيسي الحراري المرن المعمم مع إجهاد اتحميل الوضع الطبيعي لموسط المغن
 (نظرية )جرين وناخدي 

 الزائرة رمضان محمد الذيب

 قسم الرياضيات, جامعة الزاوية, كمية التربية الزاوية, ليبيا 

 2020ديسمبر  30/ تاريخ القبول:  2020ديسمبر  11تاريخ الاستلام: 
Doi: https://doi.org/10.54172/mjsc.v35i4.330 

والمجمممال  ,ممممن ااج مماد ا ساسمم  ال يدروسممتاتيك  فممم  دراسممة تمم  ير كمملالوضمما الةبيعمم  تممم اسممت دام ةريقمممة تحميممل : المستتتخم 
سممة, وتنمماقض بعمم  اً, وهممذا الةريقممة تسممت دم لمحىممول عمممج التعبيممرات الدقيقممة لممتغيممرات المدرو عمممج جسممم مممرن حراريمم المغناةيسمم 

ااج ماد ا ساسم  المعمممة تحمت تم  ير   . حيث تم استعرا  معمادلات المرونمة الحراريمةالحالات ال اىة أيضا ف  سياق المشكمة 
باسممت دام نيريمة يجمرين ونا مد ا مممن النموعين ال مان  وال المث يالنمموع ال مان  مما عمدم تشممتت والمجمال المغناةيسم   ,ال يدروسمتاتيك 
ممممن الضمممغة  وعمممدم وجمممود كمممل ,وتمممم رسمممم الكميمممات الايزيائيمممة الم تمامممة فممم  حالمممة وجمممود, ع ال المممث مممما تشمممتت لمةاقمممةالمةاقمممة والنمممو 

والنتمائ  التم   ممرج ب ما همذا البحممث توضمر ممدن الاممرق بمين النموعين ال ممان  وال المث لنيريممة   ةيسمم .اوالمجمال المغن ,يدروسمتاتيكجال 
 MATLAB)النتمائ  التمم  تممم الحىممول عمي مما كانممت باسممت دام برنمام   شممكال و ا إلمم  أن جميمما  شممارةويجممب ااجمرين ونا ممد . 
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