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Abstract

In this work I state and prove a theorem for local existence of a unique solution for
the Nonlinear Ordinary Differential Equations (NODE):

X" (@) = f(t,x(), x"(@),x"(),..., x" (1)) (1)
of order m; where m is a positive integer; having the initial conditions:
x(j)(a) =c¢;,J=0,L...,m-1, x(a) = x(a) = ¢, (2)

Since the (NODE) (1) with the initial conditions (2) is equivalent to the Integral Equation:

x(t) =c, + Z;r: c; « _:o)'
!
J-a J:zl J;z o J;mﬁz J;mﬁl f(Smpx(Sm), x‘ (Sm)7 X"(Sm)’”.,
x(m—l) (Sm ))dsmdsmfldsm*2 coe dSstl (3)

We denote the right hand side (r.h.s.) of (3) by the nonlinear operator Q(x)t ; then
prove that this operator is contractive in a metric space E subset of the Banach space
B of the class of continuous bounded functions x(z) e C"(; ) defined by:

B :{(t,x(t),x'(z),...,xw‘>(t)) | |r-al<eo , | P (0)—c, ‘<oo} (4)

and B is equipped with the weighted norm:
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] = max (e @) ) ®

‘t—a‘STm
which is known as Bielescki's type norm. v 22, [ =max(/,1) are finite real

numbers, where / > O is the Lipschitz coefficient of the r.h.s. of (1) in B1(a subset
of the Banach space B given by (4)) defined by:

Bl:{(t,x(z),x'(z),...,x<'"—”(r)) | [t-a|<T,, ,

Where 7', for j=0,1,...,m—1 ,and T, are finite real numbers.

x D)=, ‘ST],} 6)
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Introduction

When the function fin the r.h.s. of (1) depends linearly on its arguments except t then

equation (1) is an m™ order linear ordinary differential equation and to prove the

Existence of a Unique solution for it in [a—T ,a+T ] one usually write down its
m m

equivalent system consisting of m equations of first order and use one of the well
known theorems to prove the existence of a unique solution for ¢ e[a,a+ o] then

mimic the same steps of the proof for t e[a— &, a]; after that use another theorem to
show whether the solution do exist for all  e[q—T ,g+T ] or not as in (Hurewicz,
m m

1974), and when the m® order differential equation is nonlinear one may face
difficulties in dealing with its equivalent system of first order equations. But by the
theorem which I am going to state and prove in this paper one can easily prove the
existence of a unique solution for an m® order nonlinear ordinary differential
equation on the general form (1) for all te[a—Tm,a+Tm] directly in the very

simple metric space consisting of the functions x(¢) e C"[a—T,,,a+T, ]and subset

of the Banach space (4) (Hutson and Pym, 1980) equipped with the simple efficient

norm (5) (Bojeldain, 1995), which is a simple modification on the Bielescki's type

norm sup(€ _rmx(f )) used in (Bieleski, 1956). Moreover if the Lipschitz condition
t

(7) is guaranteed to be satisfied in the Banach space (4), then the theorem guarantees

the existence of a unique solution for |t—a |<ooin most cases and not in general as
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mentioned in (Jankd, 1990) for the case of the single first order nonlinear ODE
x'(1) = f(1,x(1)).

Note that this theorem is valid for m™ order linear ordinary differential equations as well.

Theorem

Let us have the (NODE) (1) with the initial conditions (2) and suppose that the
function f in the r.h.s. of (1) is continuous and satisfies the Lipschitz condition:

£ (20,5 (0,5 (), X"V O) = £ (1,30, ¥ (0,3 (s YO (0))]
ZZYJ":(;‘XU) (1)— y(j) (t)‘ (7)

in B1 given by (6); then the initial value problem (1) and (2) has a unique solution in
the (m+1)-dimensional metric space E(of the functions x(¢) e C"[a—0J,a+J])cB
defined by:

E:{(z,x(r),x'(z),...,x""-”(r)) | [t-d|<5, x(j)(t)—cj‘ST} @®)

Such that § = min(

,AJ;I);whereT:min(Tj,Tm) for j=0,1,....m—1,

I’l

b

M zm lt—a M, ), M, is the upper bound of |f| in

Bl ie.:

(X0, X' @), sV O)| <M, V(8 X(0), X (0),.., X (1) €BI
)

Proof

Integrating both sides of (1) from a to t m-times and using the initial conditions (2)
we obtain the integral equation'

XD =co+ 3" j(t_“)] [

j . .[ (5,28, (8),X (), XV ())ds s, dsyds,  (10)

To form a fixed point problem x(#) = Q(x)t denote the r.h.s. of (10) by Q(x)¢ , and
to apply the contraction mapping theorem we first show that Q : E — K ; then

,» M, =max( ‘cj

prove that Q is contractive in E.
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We see that:
| Q(X)I—C | < zm—l (l‘——a)j+ | J“J'S] Isz J‘Slnizjsml‘f(s X(S) )C‘(S)
0 B J=1 J J' ada Jda a a ’ i ?
X (8o X" ()| disdls,, (d,, ,...dsyds, | <
m-1 \t—al [t—al" m |t—al

< <

< ZH \c}.\ i + M, — —MzZ,»:l j! (11)
Therefore:

m |t—a|j m |f_a|j71
[QWr-c,| < MY, i Mylt-al ), 7 <MS<T  (12)
which means that Q : E — E..

To prove that Q is contractive we consider the difference:
| O —0(y)t | =] O(x)~ () |(1) <
LI L T 1), ()™ ()=

= f (8, 9(5), Y (5),.s YV (5))| dis dis,, 5, ... dsyds, (13)
which according to Lipschitz condition (7) yields:

| 0()-00) i) <
[ [ [ )=y 5)| ds ds,, ds, ... ds.ds,

Multiply the r.h.s. of (14) by € —vH—al evHal g get:

<

(14)

| 0(0)-0(»)|(1) <
I T [ [ e
x " ds ds, ds, .. dszdsl‘ (15)

<

Inequality (15) leads to:
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| 0(0)-0(»)|(1) <

t s (S, Sp2

asa a

St (max (evLsu z'j":—; ‘x(j) (s)— y(j)(s)‘) x

‘sfa‘ﬁﬁ

X €"L‘H") dsds, ds, ,.. dszdsl‘ (16)

According to (5), the norm definition, inequality (16) becomes:

| 0(0)-0(»)|(1) <

t eSS S (S

ds, ... ds,ds,

(17

Manipulating the integrals in (17) we obtain the following inequality:

| 0(x)-0(») |1 <

(eVL|t7a| _1)_ njlil |t_a|] <
ST

tha m—1 (VL|t_ DJ
< Lyl (e )+ X SRS

L (e -~ (vL|t—al)
<Llx— | (e )+ 3,

- (elet—al . 1) (18)

< L|x—y]

(VL)

10()-0() | (1) < Lux—yu(v%)m(e“"“ -1) (19)

Multiplying both sides of (19) by € "~ leads to:

e i | Q(X) _ Q(y) | (t) < 1—evH—d )”X — y“ <

2
v(vL)™! (

2 VLS| -
< CoLyT (1 e )||x v (20)
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The most r.h.s. of (20) is independent of t, thus it is an upper bound for its L.h.s. for
any |t —a|< O ; whence:

VLi-a 2 v
max ([ Q(0-00) [0 )< Bl1-e e @
which, according to the norm definition (5), gives:

2

— <—— (1—-e"™)|[|x—y| <
[eco-om|<- o L)’”l( )x— ]
(1_€_VL5|)HX_YH (22)
noting that for finite L >1, v 22 and m =1 we have

2 < E <1

V(VL)m -1 v

Since 0 < (1 —e ) ) <1; then Q(x)t is a contraction operator in E and thus

has a unique solution for e [a - 59 a+t 5 ]

Conclusion

. . -vLS .
We see that the contraction coefficient 0 < (1 —e " )) <1 for any finite §>0

which means that the solution for the problem under consideration is, in fact,
guaranteed globally for | —a[< T, and not only locally for| 7 —a |< & . Moreover; in

most cases; if the function f in the r.h.s. of (1) is continuous and satisfies Lipschitz
condition in the Banach space (5) with finite positive Lipschitz coefficient then the
theorem is proved for t in any interval I of finite length because the contraction

coefficient will be positive and less than(l—ef"L“ (l))<1; where u(I) is the

measure of the interval L.
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X" = £(t,x(t), x'(t), x"(@),...,x" () (1)

;@\#Y\Ljﬂ\cnsg;}a@mamm&g;sma__ﬁ‘)a\h

x(j)(a) =c¢;,J=0,L...,m-1, x(a) = x(a) = ¢, (2)
 AlalSill Alalaall L3818 () 65 (2) Aglai¥) Jo s i) pa (1) Asbaall o) Ll

S S R A CHETER R R

m—1
X" V(s Vs, ds, _ds, _,..ds,ds, (3)
el (5% sl 138 O i SO()r ot st el (3) Adladll )l
33 5anal) Alaiall Jgal) dlusd e o S B CLU sliad e > E g e cliad @ (contractive)
Pk lS Gl x(1) e CM ()
B - {(t,x(t),x'(t),...,xw‘>(t)) | Jr-al<oo . | xP (), | <oo}

D Ossall Jlaall 3 34l

“)

”x” — max e—vL\t—a\ Zj:;‘x(j)(t)‘ ) (5)

‘t—a‘STm
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i a [ >0 dgie ddsa el L=max(l,1) v 22 Cus (Sully e anls a5

3B ¢l slimd e k5 Bl Ao pema b f(1,2(0), x'(0), X0, x7 (1)) W 525

B1:{(trx(t),x’(t)r--ax(m_l)(t)) | [t~al<T, (6)

E gl sbaillyc j=0,1,...,m—1 il aread dpgiia L Slac T, T, ol sle) e e

x(j)(t)—cj ‘STJ-}

ok LS i yra
E:{(r,x(z),x'(t),...,x<'"*”(t)) | J-a]<5, |5V -c, \ST} 7)
¢ i . . _ . . . T Cam

Jj=0,1...m—1 & T =min(7T,,T,,) 5_mm(a,M) s

G M ¢ Mzzmax( |cj | , M, ) ¢ M=M227_1|t_;|.

£ X0, 5O, X"V @) <M, V(8 X(0), X (1), x" V(1) €BI
@)
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