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Abstract: Satellite-based remote sensing technologies and Geographical Information Systems
(GIS) present operable and cost-effective solutions for mapping fires and observing post-fire regen-
eration. Elwasita wildfire, which occurred during April and May in 2013 in Libya, was selected as a
study site. This study aims to monitor vegetation recovery and investigate the relationship between
vegetation recovery and topographic factors by using multi-temporal spectral indices together with
topographical factors. Landsat 8 (OLI and TIRS) images from different data were obtained which
were for four years; April 2013, June 2014, July 2015, and July 2016, to assess the related fire se-
verity using the widely-used Normalized Burn Ratio (NBR). Normalized difference Vegetation
Index (NDVI) was used to determine vegetation regeneration dynamics for four consecutive years.
Also, the state of damage, vegetation recovery and, damage dimensions about the burned area were
capable of being effectively detected using the result of supervised classification of Landsat satellite
images. In addition, aspect, slope, and altitude images derived from Digital Elevation Model
(DEM) were used to determine the fire severity of the study area. The results have found that it
could be possible to figure out the degree of vegetation recovery by calculating the NDVI and NBR
using Landsat 8 OLI and TIRS images. Analysis showed that it mainly oriented towards the north-
west (47%), north (29%), and northeast (12%). The statistical analysis showed that fire was concen-
trated on the incline by 76%, and the most affected areas are those between 200 m-450 m above sea
level, with a percentage of 80%. It is expected that the information can be acquired by various satel-
lite data and digital forests. This study serves as a window to an understanding of the process of fire
severity and vegetation recovery that is vital in wildfire management systems.
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INTRODUCTION

Fire is a natural factor that appears in all forest
ecosystems and affects its numerous functions
such as; adjusting plant succession and wildlife
homeland, recycling nutrients, keeping biologi-
cal diversity, decreasing biomass, and monitor-
ing insect and disease populations. Therefore,
fire can destroy trees and understory plants.
Local species historically adjusted to fire and
had a high regeneration capability. But since
Homo sapiens first learned how to use fire, this
balance was destroyed and the majority of for-
est fire has been of anthropogenic origin result-

ing in different tragic problems threatening the
life of its main cause (Tishkov, 2004). The pas-
sive influences include air and water pollution,
soil losses, destroyed biodiversity, desertifica-
tion, soil corrosion, affecting human health and
safety, as well as loss of human life. The Medi-
terranean basin is one of the world’s biodiversi-
ty hotspots (Alacantara, 2010), where numer-
ous civilizations over history relied on its forest
resources for their cultural, economic, social,
and esthetic service. However, every year fires
damage millions of hectares of these surfaces
(Maheras, 2002). This study serves as a win-
dow to an understanding of the process of fire
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severity and vegetation recovery that is vital in
wildfire management systems (Maheras, 2002).
Fire is a considerable factor in the framework
of many communities worldwide (Bond et al.,
2005). There is an argument that fire was recur-
rent over the late Quaternary in the Mediterra-
nean region (Carrion et al., 2003). Fires were
recurrent much previously as many species
have gained adaptive mechanisms to continue
and regenerate after recurrent fires (Pausas &
Verdu, 2005; Pausas, 2004). Mediterranean
region biodiversity has been composition ac-
cording to the various fire regimes. Therefore,
it is obvious that in the Mediterranean region,
fires are natural, they have happened for mil-
lennia, and plants can overcome them. In this
case, fires ought not to be considered an eco-
logical disaster but rather a part of the natural
process. However, few studies suggest that cur-
rent fire regimes may cause disasters in the
sense of inducing sudden community changes
or significant soil erosion (Arnan et al., 2007,
Kazanis & Arianoutsou, 2004; Rodrigo et al.,
2004).

Since the mid-eighties of the last century, nu-
merous remote sensing applications have been
preceding to assess fire severity on local and
regional ecosystems. Some studies found fire
caused vegetation shift measured by satellite
sensors, whereas additional recent studies have
discussed linking ecological measures to fire-
induced physical changes on the land surface
(Jakubauskas et al., 1990; White et al., 1996).
When a plant is burned, a decrease in visible-
to-near-infrared surface reflectance correlates
with the charring and of vegetation (Eva &
Lambin, 1998; Trigg & Flasse, 2000). At finer
spatial resolutions, the burning of a large area
of vegetation may, in some situations, lead to a
rise in surface reflectance because of the depo-
sition of white ash (Landmann, 2003; Roy &
Landmann, 2005; Smith & Hudak, 2005; Smith
et al., 2005). This is usually joined by an in-
crease in the short wave infrared reflectance
and brightness temperatures, which is imputed
to the many effects of rising soil exposure, a
rise in radiation absorption by charred vegeta-

tion, and reduced evapotranspiration compara-
tive to the pre-fire green vegetation (Eva &
Lambin, 1998; Smith et al., 2005; Stroppiana et
al., 2002). The degree of post-fire change may
vary depending on vegetation type, annual dif-
ferences in growing season weather, and over-
all time since fire. For this reason, stratification
among vegetation types, comparison of images
with similar vegetation phenology, and image
differencing techniques including pre-fire, im-
mediate post-fire and 1-year-post-fire images
have been recommended to assess fire effects
and ecological change (Cocke et al., 2005;
White et al., 1996). Moreover, canopy mortali-
ty, ground charring, and changes in soil color
caused by fire; can be easily detected, provided
sensors have an adequate spatial and spectral
resolution (White et al., 1996).

Presently, remote sensing technology and GIS
in the mapping and classification of natural re-
sources are widely available. Using remote
sensing to classify and analyze burned areas
require some information on the land cover dis-
turbance effect on the reflection of electromag-
netic energy (White et al., 1996). After a dry
season, and a severe shortage of rainfall and an
increase of hot southern wind, fires erupted in
Elwasita at north of Al-Bayda city in Al-Jabal
Al-Akhdar region, during the months of April
and May in 2013, which led to the destruction
of vast areas of forest up to thousands of hec-
tares (Masoud & Alajeel 2016).

The main objective of this study is to detect
vegetation recovery following fire using Land-
sat 8 (OLI and TIRS) images and investigate
the relationship between fire occurrences and
topographic factors: altitude, slope, and aspect
using GIS techniques. In this investigation,
burn severity and vegetation recovery were as-
sessed by using NDVI and NBR indices.

MATERIALS AND METHODS

Study Area: The Elwasita area is located in
the Al-Jabal Al-Akhdar region on the northeast
coast of Libya (Figure 1). Al-Jabal Al-Akhdar
extends from a latitude of 32°00" to 33°00°'N
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and longitude of 20°00" to 23°00°E. With Lib-
ya's highest rainfall (600mm), the Al-Jabal Al-
Akhdar region incorporates areas of intensive
agriculture on plains and valley bottoms, and
open woodland and shrubland on steep ravines
and terra rosa slopes (Masoud, 2015).

Location map of Elwasita Area.

Elwasita Area
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Figure: (1). Elwasita area in Al-Jabal Al-Akhdar, Libya.

Satellite imagery: A set of images Landsat 8
OLI and TIRS (with 11spectral bands and 30 m
spatial resolution) from different data, which
were for four years from April in 2013 to July
in 2016, were applied from Landsat 8 (OLI and
TIRS) (http://glovis.usgs.gov/) to cover the en-
tire study area, which is cloudless, enables

simple processing and accurate classification
(Table 1).

Table (2). Landsat 8 band designations.

Table (1). List of Landsat Images

Satellite Images

Land- Land- Land- Land-
Sen- sat8(OLI  sat8(OLI  sat8(OLI  sat8(OLI
sor and and and and

TIRS) TIRS) TIRS) TIRS)
Date 2013.04 2014.06 2015.07 2016.07

Each image has a spatial resolution of 30 me-
ters, except for the panchromatic channel and
the thermal-infrared bands, which have 15 and
100 meters resolution, respectively (Table 2).

Classification: Supervised classification was
carried out for the years: April 2013, June
2014, July 2015, and July 2016. Ground con-
trol points, obtained using a Global Positioning
System (GPS) from locations in relation to the
classes of the study area, were plotted on Land
sat 8 image, which was used to verify the train-
ing sites (defined classes) as regards the spec-
tral signature. Supervised classification for the
various classes was performed using finally
maximum likelihood classification. For image
classification, five classes were defined which
are Burned area, Woodlands, Urban areas, Sea,
Other uses.

Wavelength Resolution
Bands (micrometers) (meters)

Landsat 8
Operational Band 1 - Coastal aerosol 0.43-0.45 30
Land Imager Band 2 - Blue 0.45-0.51 30
(OLI) Band 3 - Green 0.53-0.59 30
and Band 4 - Red 0.64 - 0.67 30
Thermal Band 5 - Near Infrared (NIR) 0.85-0.88 30
Infrared Band 6 - SWIR 1 1.57-1.65 30
Sensor Band 7 - SWIR 2 2.11-2.29 30
(TIRS) Band 8 - Panchromatic 0.50-0.68 15

Band 9 - Cirrus 1.36 - 1.38 30
Launched Band 10 - Thermal Infrared 10.60-11.19 100
February 11, 2013 (TIRS) 1

Band 11 - Thermal Infrared 11.50-12.51 100

(TIRS) 2
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Assessment of Classification Results Using
Error Matrix The error matrix-based accuracy
assessment method is the most common and
valuable method for the evaluation of change
detection results. Thus, an error matrix and a
Kappa analysis were used to assess change ac-
curacy. Kappa analysis is a discrete multivari-
ate technique used in accuracy assessments
(Congalton & Mead, 1983; Jensen, 1996).

Normalized difference vegetation index
(NDVI): NDVI is defined as the difference and
ratio of reflection between visible ray and near-
infrared wavelength. In this study, it was used
to detect the change of vitality with the spatial
distribution of vegetation, which is calculated
using the following equation.

NDVI = (NIR-R) / (NIR+R) = (Band 5 — Band
4) / (Band 5 + Band 4).

Where:

NDVI — Normalized Difference Vegetation In-
dex.

NIR — Near Infra-Red Band (band 5 Landsat 8
(OLI and TIRS).

R — Red spectral band (visible, Red-band 4
Landsat 8 (OLI and TIRS).

Normalized Burn Ratio (NBR): The formula
is similar to NDVI, except that it uses near-
infrared (NIR) and shortwave-infrared (SWIR)
wavelengths. The NBR was designed to high-
light burned areas and estimate fire severity,
which is calculated using the following equa-
tion.

NBR= (NIR-SWIR) / (NIR+SWIR) = (Band 5 —
Band 7) / (Band 5 + Band 7).

Where:

NBR —Normalized Burning Ratio.

NIR — Near Infra-Red Band (band 5 Landsat 8
(OLI and TIRS).

SWIR — Short wave- Infrared band (band 7
Landsat 8 (OLI and TIRS).

The Digital Elevation Model (DEM): The
Digital Elevation Model (DEM) - SRTM-30m
data was downloaded from the website
(http://www.diva-gis.org/gdata).Altitude, slope,
and aspect are among the most important data

in many natural resources. Elevation, slope,
and aspect were derived from DEMs and used
with other spatial data.

The digital image-processing software Envi5
was used for the processing, analysis, and inte-
gration of spatial data to reach the objectives of
the study. The GIS software is used to assist
planners in the analysis of such changes, by
combining the maps derived from the classified
images and integrating the multiple databases.

RESULTS

Classification: supervised classification of
satellite images of April 2013, June 2014, July
2015, and July 2016 have shown clearly the
amount of change in the land cover in the study
area. For image classification, five classes were
defined which are: Burned area, Woodlands,
Urban areas, Sea, and, Other uses (Figure 2).

Supervised classification for

5 o Supervised classification for
landsat image - April - 2013

landsat image - June - 2014

5 xR = NG,
Supervised classification for
landsat image - July - 2015

Suervie classification for
landsat image - July - 2016
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x
= Map source; Moussa Masoud | Land cover
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Figure: (2). Supervised classification of satellite images
of Elwasita area in Al-Jabal Al-Akhdar for four years
(April 2013, June 2014, July 2015, and July 2016).

The overall accuracy for the classified map
based on the supervised classification was
90.3% which is considered good, and it is
above the limit set by the USGS guidelines
(85%). Because the overall accuracy assess-
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ment tends to overestimate the actual perfor-
mance, a more useful representation of perfor-
mance is the Kappa coefficient (Cohen, 1960).
The Kappa coefficient for the supervised image
was 0.811, which means that 81.1% of the clas-
sification is better than a random classification.

This is considered good because a Kappa value
above 80% 1is considered to have a strong
agreement (Manandhar et al., 2009). Table 3
shows the results for the accuracy assessment
for the supervised classification of the classi-
fied image.

Table(3). Matrixes of changes (Square Km) in land cover of classified map

Sea Urban Area  Other Uses Woodlands Burned Total Producer’s
Area Accuracy

Sea 24377 55 1232 0 0 25664 94.98519
Urban Area 0 520 45 110 2 677 76.80945
Woodlands 090.2 120 2409 5 2624.2 91.79941
Burned Area 0 0 5 3 38.6 46.6 82.83262
Other Uses 728 4 21452 20 3 22207 96.60017
Total 25105 669.2 22854 2542 48.6 51218.8
user’s accuracy  97.10018  77.70472 93.86541 94.7679 79.42387

Average accuracy 88.57
Overall accuracy 90.3
Overall Kappa statistics=0.811

NDVI: The interpretation implies the delimita-
tion of the areas in tones of different colors,
which shows characteristics of the vegetation.
NDVI was calculated for all the satellite imag-
es (Figure 3).

NDVI - Value - April -2013 NDVI - Value - June -2014

N

NDVI - Value - July -2015 NDVI - Value - July -2016

Legend
Map source; Moussa Masoud &

Date source;20/10/2021 NDVI
Value
-High: 1

L) 5 1

20 Kilometers
S R

Low:-1

Figure: (3). Land covers change detection using NDVI.

NBR: One of the most widely used indexes for
mapping burn severity is NBR, which com-
bines the reflectance in the NIR and SWIR
bands. NBR is a very sensitive index to empha-
size burned areas and to determine the severity
of the burns (Figure 4).

NBR - Value - April 2013

NBR-Value - June -2014

i

NBR-Value - July 2016

Legend
Map source; Moussa Masoud
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™
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Figure: (4). Land covers change detection using NBR.

Slope: A slope is defined as the rate of change
of elevation, expressed as a gradient in per-
centage or degrees. A slope map of the present
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study area was prepared from DEM in GIS.
The slope of the present study has been divided
into three classes, which were slightly inclined,
inclined, and strongly inclined (Figure 5). The
statistical analysis showed that fire was con-
centrated on the inclined sections in a propor-
tion of 76%, while 16 % in strongly inclined,
and 8 % slightly inclined (Table 4). The results
do not show any relationship between fires and
slopes, but this may be due to the nature of the
area exposed to fire and does not prove that
there is no relationship.

N
A Map source; Moussa Masoug | Le9end
0
L

Slope
Date source 201012021

5 10 20 Kilometers [ slightly inclined
L | | Inclined

[ trongly inclined

Figure: (5). Map of the inclinations.

Table (4). Percentage of burned areas on the altitude,
slope, and aspect.

Map source; Moussa Masoud
Date source 20/10/2021
20 Kilometers
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Figure: (6). Map of slopes exposure.

Altitude: Another element with an important
role in analyzing forest fire is altitude; because
it determines the accessibility of affected areas
for intervention, and high areas have a low de-
gree of accessibility. In more detail, the altitude
of the affected areas as defined in 3 classes are;
between sea level to 864 meters (sea level to
200 m, 201-450, and 451- 864) (Figure 7).
Thus it was observed that the most affected ar-
eas were those between 200 m-450 m, with a
percentage of 80%. Also affected were the
classes from sea level to 200 m in a proportion
of 20%, while the area between 451 - 864 m
was free of fire (Table 4).

Slightly in- o North o 20

clined 8% West 47% 0-200m %

. 76 o 200- 80

Inclined % North  29% 450m o,
Strongly in- 16  North o Above

clined % East 12% 450m 0

Aspect: Aspect is the steepest downslope di-
rection from each cell to its neighbors. It can be
thought of as the direction of a slope or the
compass direction a hill faces. According to a
degree of a slope, its direction is categorized
into nine classes (Figure 6). The results have
found they mainly oriented towards NW
(47%), N (29%), and NE (12%) slope orienta-
tion (Table 4). The results found that the areas
most exposed to fire are the northeastern as-
pect, followed by the northern aspect.

Legend
B0
[ 0480
I swove 450

5 10 2 Kilometers  DAE SOUTCE 2011012021

N
A Map source; Moussa Masoud
0
L

Figure: (7). Altitude map of the three categories.
DISCUSSION

© 2021 Moussa J. Masoud. This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

ISSN: online 2617-2186 print 2617-2178



Al-Mukhtar Journal of Sciences 36 (4): 287-298, 2021

Post-fire monitoring in the Elwasita area was
achieved using supervised classifications,
NDVI, and NBR. The results explain how re-
mote sensing can be applied to estimate, ob-
serve, and quantify post-fire in a massive zone
where traditional procedures (such as field ob-
servation) may not be possible.

In this study, land cover classification images
for four years (2013, 2014, 2015, and 2016)
were carried out. The results have found that
burned areas decreased. On the other hand, the
woodland area increased. This indicates the
natural recovery of woodlands with time. Espe-
cially it was concluded that the amount of re-
covery increased significantly from 2013 to
2016 (Figure2).

Numerous studies found that the NBR is the
most effective index for burn severity. The
NBR is estimated as the difference between
near-infrared (NIR) and short-wave infrared
(SWIR) reflectance divided by their sum (Key
& Benson, 2005). The NDVI is another widely
utilized index that is an indicator of plant
greenness, measuring plant type, and amount
on land surfaces. Many studies have used
NDVI to monitor post-fire vegetation dynamics
in the Mediterranean region (Mitri & Gitas,
2010; Petropoulos et al., 2014; Veraverbeke et
al., 2010).

The results have shown NDVI images are the
most useful to quantify the difference in photo-
synthetically active vegetation. Not only can a
distinct presence and absence within the perim-
eter be determined by looking at the images,
but it is also easy to generate charts using the
information provided by the image. Figure 3
shows the difference in the average NDVI val-
ues in the two subsets; burned and unburned
area for four years. The highest values of
NDVI (0.75 - 2013, 0.51 — 2014, 0.63 -2015,
0.72-2016) are correspondent to the tones of
white and reach up to 1. These are associated
with the thickest and healthiest forests. The
darkest tones, close to black, show the exact
opposite of what was mentioned above. The

lack of vegetation, chlorophyll, is expressed by
the bare soil or rock, which absorb the near-
infrared more.

NDVI has been confirmed to be specifically
sufficient to estimate post-fire recovery of
Mediterranean ecosystems (Diaz-Delgado et
al., 1998; Fox et al., 2008; Gouveia et al., 2010;
Hope et al., 2007) as well as to observe vegeta-
tion dynamics subject to stress conditions such
as those associated to major drought situations
(Gouveia et al., 2009). Some authors (Epting &
Verbyla, 2005; Kokaly et al., 2007; Miller et
al., 2009; Miller & Thode, 2007) have success-
fully estimated burn severity established on
temporal changes between pre and post-fire
satellite imagery, namely by using differences
of pre-and-post-fire NDVI values (De Santis &
Chuvieco, 2007; Fox et al., 2008).

The NBR index displayed itself to be more crit-
ical to the pre-/post-fire displacements of the
pixels influenced by the fire in the MIR-NIR
space than the NDVI in the R-NIR space.
Healthy vegetation shows a very high reflec-
tance in the NIR, and low reflectance in the
SWIR portion of the spectrum. The opposite of
what is seen in areas devastated by fire. Both
indices were hardly sensitive to the pre-/post-
fire spectral changes corresponding to the unaf-
fected pixels attributable to ‘‘perturbing fac-
tors’’. The pre-/post-fire indices are the most
appropriate ones for holding out the discrimi-
nation between pixels not burned by a fire and
pixels affected by a fire. The results showed
that there was a slight difference in the vegeta-
tion recovery rate measured by the NBR be-
tween the different years with NDVIL.

Furthermore, it is worth noting the greater ca-
pacity of the NBR to determine fire severity
levels, which is in agreement with the results of
previous works that compare NBR and NDVI
(Pereira, 1999). The effective use of altitude
information can detect physical conditions on
the land that may increase or decrease a proper-
ty’s risk of natural hazards (Figure 7). It is ob-
served that the most affected areas are those
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between 200 m-450 m, with a burned area per-
centage of 80%. Also, a visual interpretation of
the relationships between woodlands recovery
and topography are presented in Figures 5, 6,
and 7 respectively. Comparing the two index
results, it can be seen that stronger recovery
dynamics appeared to occur in the northwest
and north of the burn area. It is common with
other studies and many authors; finding that
recovery was better on north-facing slopes
compared to south-facing slopes related to
northern hemisphere dynamics (Fox et al.,
2008). This fact reveals that vegetation recov-
ery dynamics following a forest fire event take
a long time.

This study was aimed towards showing that
remote sensing is a helpful management tool
and that quantifiable data could be taken from
the images using basic image enhancements
and simple band math. Demonstrating that a
land manager could manipulate images and can
monitor landscape level changes. By using re-
motely sensed imagery in a more common pat-
tern, managers could keep resources by per-
forming small field studies to get precise data
on the rate of change. Remote sensing has
been perceived to be a robust tool to observe
post-fire vegetation recovery over different re-
gions (Epting & Verbyla, 2005; Goetz et al.,
2006) that include Mediterranean ecosystems
(Minchella et al., 2009; Roder et al., 2008). The
method established on remote sensing has also
been successfully utilized to evaluate fire risk
(Chuvieco et al., 2010), burn severity (De
Santis & Chuvieco, 2007; Epting & Verbyla,
2005; Fox et al., 2008; Kokaly et al., 2007;
Miller et al., 2009; Miller & Thode, 2007) and
erosion risk (Fox et al., 2008).

Future studies in this area should include using
more study areas with different types of and
vegetation to accurately display the extent to
which NDVI and NBR can be used. Another
suggestion would be to study the meteorologi-
cal indicator effect to enclose the entire perime-
ter of the fire using remote sensing and GIS.

CONCLUSION

NDVI, NBR, supervised classification, aspect,
slope, and altitude images were used to deter-
mine the fire severity and vegetation recovery
of the study area. Analysis showed that it main-
ly oriented towards the northwest (47%), north
(29%), and northeast (12%). The statistical
analysis showed that fire was concentrated on
the inclined in a proportion of 76%, and the
most affected areas are those between 200 m-
450 m above sea level, with a percentage of
80%.
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