Prediction of Landscape Function and Soil Surface Condition in the Libyan Rangelands Using Selected Spectral Vegetation Indices


  • Adel M. A. Mahmoud Faculty of Forestry University of Putra Malaysia (UPM) Serdang, Selangor, Malaysia
  • Mohamed Hasmadi I I Faculty of Forestry University of Putra Malaysia (UPM) Serdang, Selangor, Malaysia
  • M.S. Alias Faculty of Forestry University of Putra Malaysia (UPM) Serdang
  • Mohamad Azani A. Faculty of Forestry University of Putra Malaysia (UPM) Serdang, Selangor, Malaysia





Spectral Vegetation Indices (SVIs) have been used to examine variations in vegetation formation and phenology. Lately, researchers and agricultural practitioners have utilized SVIs to examine various soil properties for instance moisture and nutrients. From our review of the literature, there were few comprehensive studies conducted to know whether it is possible or not to predict landscape function indices by using remote sensing technology, and which spectral vegetation index is the best predictor. It has been shown that landscape function indices can be accurately predicted by Normalized Different Vegetation Index (NDVI). Therefore, we attempted to test the ability of selected SVIs to predict landscape function indices (LFA-SSA) in the Mediterranean steppes of Al-Jabal Al-Akhdar, northeast Libya. We used data collected between May and October of 2006 and 2014. A total of 28 sites were chosen to collect the data for both SVIs and LFA-SSA. Simple linear regression was applied between LFA-SSA and SVIs. The results demonstrated that there is a positive linear relationship between LFA-SSC and the selected SVIs. The findings revealed that the Normalized Different Vegetation Index (NDVI) and Modified Soil Adjusted Vegetation Index (MSAVI) acquired from the Landsat Enhanced Thematic Mapper Plus (ETM+) could be utilized in predicting the variability of significant structural and functional qualities of soil and vegetation in the Mediterranean climate.


Download data is not yet available.


Furniss, D. G. (2010). Can indices of landscape function analysis (LFA) be derived from ground-based spectroscopy? A case study from gold mines on the Highveld of South Africa. Degree of Master of Science, School of Animal, Plant and Environmental Science University of the Witwatersrand, Johannesburg, South Africa, 167pp.

Gaitán, J. J., Bran, D., Oliva, G., Ciari, G., Nakamatsu, V., Salomone, J., Humano, G. (2013). Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecological indicators, 34, 181-191. DOI:

García-Gómez, M., & Maestre, F. T. (2011). Remote sensing data predict indicators of soil functioning in semi-arid steppes, central Spain. Ecological indicators, 11(5), 1476-1481. DOI:

Hamad, A. M., & Taha, R. M. (2008). Effect of sequential subcultures on in vitro proliferation capacity and shoot formations pattern of pineapple (Ananas comosus L. Merr.) over different incubation periods. Scientia Horticulturae, 117(4), 329-334. DOI:

Hamad, S. (2012). Status of water resources of Al Jabal Al Akhdar region, North East Libya. Libyan Agriculture Research Center Journal International, 3, 247-259.

Han, Y., Wang, Y., & Zhao, Y. (2010). Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2509-2515. DOI:

Holm, A., Burnside, D., & Mitchell, A. (1987). The development of a system for monitoring trend in range condition in the arid shrublands of Western Australia. The Rangeland Journal, 9(1), 14-20. DOI:

Kakembo, V., Ndlela, S., & Cammeraat, E. (2012). Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23(6), 548-556. DOI:

Lau, I., Hewson, R., Ong, C., & Tongway, D. (2008). Remote mine site rehabilitation monitoring using airborne hyperspectral imaging and landscape function analysis (LFA). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 325-330.

Maestre, F. T., & Escudero, A. (2009). Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology, 90(7), 1729-1735. DOI:

Mahmoud, A., Gadallah, A., Mohemmed, S., Mohamed, M., Abdel-Ghani, A., Alhendawi, R., & Russell, P. J. (2008). Aspects of range condition recovery in the southern jebel al akhdar, northeastern libya.Paper presented at the Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (volumeⅠ).

Mahmoud, A., Hasmadi, I. M., Alias, M., & Azani, A. M. (2016). Rangeland Degradation Assessment in the South Slope of the Al-Jabal Al-Akhdar, Northeast Libya Using Remote Sensing Technology. Journal of Rangeland Science, 6(1), 73-81.

Mazzarino, M., Bertiller, M., Sain, C., Laos, F., & Coronato, F. (1996). Spatial patterns of nitrogen availability, mineralization, and immobilization in northern Patagonia, Argentina. Arid Land Research and Management, 10(4), 295-309. DOI:

Mróz, M., & Sobieraj, A. (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7(7), 39-66.

Nicholson, S. E., Davenport, M. L., & Malo, A. R. (1990). A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Climatic change, 17(2-3), 209-241. DOI:

Ong, C., Tongway, D., Caccetta, M., & Hindley, N. (2009). Phase 1: deriving ecosystem function analysis indices from airborne hyperspectral data. CSIRO Explor. Min.

Paredes, P. (2011). Caracterización funcional de la Estepa Magallánica y su transición a Matorral de Mata Negra (Patagonia Austral) a partir de imágenes de resolución espacial intermedia. Magister thesis. Universidad de Buenos Aires. 134pp

Rivero, R., Grunwald, S., Binford, M., & Osborne, T. (2009). Integrating spectral indices into prediction models of soil phosphorus in a subtropical wetland. Remote sensing of environment, 113(11), 2389-2402. DOI:

Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS-1 Symp., 1, 309-317.

Russell, P. J. (2007). Assessing long-term change in rangeland ecological health using the Western Australian Rangeland Monitoring System.thesis Degree of Doctor of Philosophy Muresk Institute, Centre for the Management of Arid Environments. Curtin University.

Tongway, D., & Hindley, N. (2004). Landscape function analysis: a system for monitoring rangeland function. African journal of range and forage science, 21(2), 109-113. DOI:

Vásquez-Méndez, R., Ventura-Ramos, E., Oleschko, K., Hernández-Sandoval, L., Parrot, J.-F., & Nearing, M. A. (2010). Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena, 80(3), 162-169. DOI:

Watson, I., Thomas, P., & Fletcher, W. (2007). The first assessment, using a rangeland monitoring system, of change in shrub and tree populations across the arid shrublands of Western Australia. The Rangeland Journal, 29(1), 25-37. DOI:

Yeganeh, H., jamale Khajedein, S., Amiri, F., & Shariff, A. R. B. M. (2014). Monitoring rangeland ground cover vegetation using multitemporal MODIS data. Arabian Journal of Geosciences, 7(1), 287-298. DOI:

Zhao, B., Yan, Y., Guo, H., He, M., Gu, Y., & Li, B. (2009). Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: an application in the Yangtze River Delta area. Ecological indicators, 9(2), 346-356. DOI:




How to Cite

Mahmoud, A. M. A. ., I, M. H. I., Alias, . M. ., & A., M. A. . (2018). Prediction of Landscape Function and Soil Surface Condition in the Libyan Rangelands Using Selected Spectral Vegetation Indices . Al-Mukhtar Journal of Sciences, 33(3), 161–168.



Research Articles