Variation of the specific gravity and fiber length of Juniperus phoenicea L. tree grown in AL-Jabal AL- Akhdar Region

Authors

  • Hameda A. y. Faraj Department of Forestry and Range Sciences, University of Omar Al Mukhtar, Libya
  • Anees M. Mahmood Department of Forestry and Range Sciences, University of Omar Al Mukhtar, Libya

DOI:

https://doi.org/10.54172/mjsc.v34i3.287

Keywords:

Juniperus phoenicea L, Al-Jabal Al-Akhdar, Specific gravity, Fibre length

Abstract

This study aimed to investigate the effect of geographical location, direction, and age on wood specific gravity and fibre length of the Phoenician juniper (Juniperus phoenicea L.) tree in the Al-Jabal Al-Akhdar region. Nine sites over three terraces were selected. The study was carried out on growth rings at d.b.h. for one tree of each site. The results revealed a decrease in wood specific gravity values with the increase in the distance from the pith, which ranged from 0.67 to 0.83. There were also significant differences in wood specific gravity values between the three terraces. The fibre length values ranged from 2.136 to 2.460 mm. A positive correlation between the fibre length and the distance from the pith with age was found, which increased with the increase in the distance from the pith. The study also showed significant differences in the values of mean fibre length between the different terraces, where the highest values were in the third terrace. On the same pattern, the direction influenced significantly the values of mean fibre length, where the trees in the centre have higher values of fibre length than those in the other two directions. The wood specific gravity values were significantly high in the trees grown under environmental stress in the first terrace near to the sea level, where the trees have a low tree growth rate. While the values of mean fibre length were high on the third terrace, confirming the increase in the tree growth rate and size.

Downloads

Download data is not yet available.

References

الزوام، سالم محمد. 1995. الجبل الأخضر دراسة في الجغرافيا الطبيعية. منشورات جامعة قاريونس. دار الكتب الوطنية. بنغازي. 139 صفحة.

جبريل، نجاة محمد. 2008. دراسة تباين الثقل النوعي وطول الألياف في أشجار الصنوبر الحلبي النامية في الجبل الأخضر. رسالة ماجستير. كلية الموارد الطبيعية وعلوم البيئة، جامعة عمر المختار. 125 صفحة.

علي، حسين إبراهيم محمود. 2000. الأخشاب، الخواص التشريحية والكيميائية. الشنهابي للطباعة والنشر. الإسكندرية. جمهورية مصرالعربية. 124 صفحة.

مجاهد، مجاهد مبروك، حسين إبراهيم محمود علي.2000.أساسيات علوم وتكنولوجيا واستعمالات الأخشاب. الشنهابي للطباعة والنشر. الإسكندرية. جمهورية مصرالعربية. 204 صفحة.

لجنة دراسة وتقييم الغطاء النباتي الطبيعي بمنطقة الجبل الأخضر. 2005. جامعة عمرالمختار، مشروع جنوب الجبل الأخضر، التقرير النهائي، مؤسسة القذافي العالمية للجمعيات الخيرية.

يوسف، حميدة عبد النبي. 2008. دراسة بعض الصفات التكنولوجية لخشب الأفرع في اشجار الصنوبر الحلبي، العرعر الفينيقي، الخروب والبلوط النامية في الجبل الأخضر. رسالة ماجستير. كلية الموارد الطبيعية وعلوم البيئة، جامعة عمر المختار.99 صفحة.

Bamber, R. K. (2001). A general theory for the origin of growth stresses in reaction wood: how trees stay upright. Iawa Journal, 22(3), 205-212. DOI: https://doi.org/10.1163/22941932-90000279

DeBell, D. S., Singleton, R., Gartner, B. L., & Marshall, D. D. (2004). Wood density of young-growth western hemlock: relation to ring age, radial growth, stand density, and site quality. Canadian journal of forest research, 34(12), 2433-2442. DOI: https://doi.org/10.1139/x04-123

Donaldson, L. A., Grace, J., & Downes, G. M. (2004). Within-tree variation in anatomical properties of compression wood in radiata pine. IAWA journal, 25(3), 253-271. DOI: https://doi.org/10.1163/22941932-90000364

Fortunel, C., Ruelle, J., Beauchêne, J., Fine, P. V., & Baraloto, C. (2014). Wood specific gravity and anatomy of branches and roots in 113 A mazonian rainforest tree species across environmental gradients. New phytologist, 202(1), 79-94. DOI: https://doi.org/10.1111/nph.12632

Franklin, G. (1946). A rapid method of softening wood for microtome sectioning. Tropical woods, 88, 35.

Gerendiain, A. Z., H. Peltola, P. Pulkkinen, V. Ikonen and R. Jaatinen.(2008). Differences in Growth and Wood Properties between Narrow and Normal Crowned Types of Norway Spruce Grown at Narrow Spacing in Southern Finland. Silva Fennica 42(3): 423- 437.

Henderson, J., & Petty, J. (1972). A comparison of wood properties of coastal and interior provenances of lodgepole pine Pinus contorta Dougl. ex Loud. Forestry: An International Journal of Forest Research, 45(1), 49-57. DOI: https://doi.org/10.1093/forestry/45.1.49

Husch, B., Miller, C., & Beers, T. (1971). Forest Mensuration. 2nd. Edit: New York, Ronald Press.

Kandeel, S.A.E., A.A. Abo hassan, H.M. Aly and I.A. Kherellah. (1987). The potentiality of using Juniperus procera of the South Western forest for kraft pulp production in Saudi Arabia. J. Coll. Agric. King Saud. Univ.9(1): 89-98.

Knapic, S., Louzada, J. L., Leal, S., & Pereira, H. (2008). Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. Forestry, 81(4), 465-473.

Kollmann, F.F.P. and W.A. Côté. (1968). Principles of Wood Science and Technology. I- solid wood. Springer – Verlag , Berlin . Germany. Pp 592 .

Lindström, H. (1997). Fiber length, tracheid diameter, and latewood percentage in Norway spruce: development from pith outward. Wood and Fiber Science, 29(1), 21-34.

Mazur, M., Minissale, P., Sciandrello, S., & Boratyński, A. (2016). Morphological and ecological comparison of populations of Juniperus turbinata Guss. and J. phoenicea L. from the Mediterranean region. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 150(2), 313-322. DOI: https://doi.org/10.1080/11263504.2014.994579

McGinnes, E. A., & Dingeldein, T. (1969). Selected wood properties of eastern redcedar (Juniperus virginiana, L.) grown in Missouri.

Mitchell, M., & Denne, M. (1997). Variation in density of Picea sitchensis in relation to within-tree trends in tracheid diameter and wall thickness. Forestry: An International Journal of Forest Research, 70(1), 47-60. DOI: https://doi.org/10.1093/forestry/70.1.47

Molteberg, D. (2004). Methods for the determination of wood properties, Kraft pulp yield and wood fibre dimensions on small wood samples. Wood Science and Technology, 37(5), 395-410. DOI: https://doi.org/10.1007/s00226-003-0204-6

Molteberg, D., & Høibø, O. (2006). Development and variation of wood density, kraft pulp yield and fibre dimensions in young Norway spruce (Picea abies). Wood Science and Technology, 40(3), 173-189. DOI: https://doi.org/10.1007/s00226-005-0020-2

Oliva, A. G., Merino, V. B., Seco, J. F.-G., García, M. C., & Prieto, E. H. (2006). Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Science and Technology, 40(3), 190-204. DOI: https://doi.org/10.1007/s00226-005-0014-0

Pulkkinen, I., Ala-Kaila, K., & Aittamaa, J. (2006). Characterization of wood fibers using fiber property distributions. Chemical Engineering and Processing: Process Intensification, 45(7), 546-554. DOI: https://doi.org/10.1016/j.cep.2005.12.003

Robison, T. L., & Mize, C. W. (2007). Specific gravity and fiber length variation in a European black alder provenance study. Wood and fiber science, 19(3), 225-232.

Smith, D. M. (1954). Maximum moisture content method for determining specific gravity of small wood samples.

Sofia, K., J. L. Louzada, S. Leal and H. Pereira. (2008) .Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. An International Journal of Forest Research, 81(4, 1) : 465-473. DOI: https://doi.org/10.1093/forestry/cpn012

Steel, R. G., & Torrie, J. H. (1980). Principles and procedures of statistics, a biometrical approach: McGraw-Hill Kogakusha, Ltd.

Ter Welle, B., & Adams, R. (1998). Investigation of the wood anatomy of Juniperus (Cupressaceae) for taxonomic utilization. Phytologia, 84, 354-362.

Wani, B. A., Bodha, R., & Khan, A. (2014). Wood specific gravity variation among five important hardwood species of Kashmir Himalaya. Pakistan Journal of Biological Sciences, 17(3), 395-401. DOI: https://doi.org/10.3923/pjbs.2014.395.401

Watt, M. S., D’Ath, R., Leckie, A. C., Clinton, P. W., Coker, G., Davis, M. R., . . . Mason, E. G. (2008). Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata fibre length. Forest Ecology and Management, 254(2), 166-177. DOI: https://doi.org/10.1016/j.foreco.2007.07.036

Welle, B.J.H. and R.P. Adams . (1998) . Investigation of the wood anatomy of Juniperus ( Cupressaceae ) for taxonomic utilization . Phytologia . 84 (5): 354-362 .

Wilfred Jr, A., & Kollmann, F. F. (1968). Principles of wood science and technology: Springer. DOI: https://doi.org/10.1007/978-3-642-87928-9

Xu, H., Nakao, T., Tanaka, C., Yoshinobu, M., & Katayama, H. (1998). Effects of fiber length and orientation on elasticity of fiber-reinforced plywood. Journal of Wood science, 44(5), 343-347. DOI: https://doi.org/10.1007/BF01130445

Zubizarreta-Gerendiain, A., Peltola, H., Pulkkinen, P., Ikonen, V.-P., & Jaatinen, R. (2008). Differences in growth and wood properties between narrow and normal crowned types of Norway spruce grown at narrow spacing in southern Finland. DOI: https://doi.org/10.14214/sf.247

Published

2021-09-30

How to Cite

Faraj, H. A. y. ., & Mahmood, A. M. . (2021). Variation of the specific gravity and fiber length of Juniperus phoenicea L. tree grown in AL-Jabal AL- Akhdar Region. Al-Mukhtar Journal of Sciences, 34(3), 195–205. https://doi.org/10.54172/mjsc.v34i3.287

Issue

Section

Research Articles

Categories