Effects of Different Levels of Urea as Nitrogen Source on Chemical Composition of Marine Microalgae Nannochloropsis oculata

Authors

  • Ali Mahmoud Abougrara Department of Marine Resources, Faculty of Natural Resources and Environmental Sciences, Omar Al-Mukhtar University, El-Beda, Libya.

DOI:

https://doi.org/10.54172/mjsc.v36i1.5

Keywords:

Amino Acids, Fatty Acids, Nannochloropsis oculata, Proximate Composition

Abstract

Microalgae breeding media must be cost effective, enable high growth, meet exact requirements and be readily available. The effect of different levels of urea [25, 50, 75, and 100%] in the growth medium on the biochemical constituents (protein, carbohydrates, lipids, fatty acids, and amino acids) of the Nannochloropsis oculata, was assessed compared to the F/2 Guillard standard medium. The obtained results revealed that the chemical constituents of N. oculata were influenced by the different levels of urea. The highest total protein was obtained by A4 medium (100% urea) (26.44%) and A3 medium (75% urea) (25.84%). The maximum percentage of essential amino acids (EAA) (51.54%) was obtained by using the A4 medium (100% urea) as compared to the control (100% F/2). The highest total lipid content was achieved by using the A1 medium (25% urea) pro- ducing (17.33 %) and A4 medium (100% urea) (16.98%). Accordingly, the highest total saturated fatty acids percentage (TSFA) of N. oculata was recorded by the A3 medium. In conclusion, the addition of urea is an excellent policy to increase chemical composition and lipid accumulation. The present study recommended taming results for aquaculture feeding through using the proposed A1 medium as a lipid promoter or A4 medium as a protein promoter.

Downloads

Download data is not yet available.

References

Ashour, M., & Kamel, A. (2017). Enhance growth and biochemical composition of Nannochloropsis oceanica cultured under nutrient limitation using commercial agricultural fertilizers. J. Mar. Sci. Res. Dev, 7, 233.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. DOI: https://doi.org/10.1139/o59-099

Block, R. J. (1948). Quantitative estimation of amino acids on paper chromatograms. Science (Washington), 108, 608-609. DOI: https://doi.org/10.1126/science.108.2813.608

Bondioli, P., Della Bella, L., Rivolta, G., Zittelli, G. C., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D., & Tredici, M. R. (2012). Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource technology, 114, 567-572. DOI: https://doi.org/10.1016/j.biortech.2012.02.123

Borges-Campos, V., Barbarino, E., & Lourenço, S. d. O. (2010). Crescimento e composição química de dez espécies de microalgas marinhas em cultivos estanques. Ciência Rural, 40(2), 309-317. DOI: https://doi.org/10.1590/S0103-84782010005000009

Borowitzka, M. A. (1997). Microalgae for aquaculture: opportunities and constraints. Journal of applied phycology, 9(5), 393-401. DOI: https://doi.org/10.1023/A:1007921728300

Boyce, D. G., Lewis, M. R., & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466(7306), 591-596. DOI: https://doi.org/10.1038/nature09268

Carvalho, A. P., Monteiro, C. M., & Malcata, F. X. (2009). Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. Journal of applied phycology, 21(5), 543-552. DOI: https://doi.org/10.1007/s10811-009-9415-z

Cavonius, L. R., Albers, E., & Undeland, I. (2015). pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient. Algal research, 11, 95-102. DOI: https://doi.org/10.1016/j.algal.2015.05.022

Chemists, A. o. O. A., & Horwitz, W. (1995). Official methods of analysis (Vol. 222). Association of Official Analytical Chemists Washington, DC.

da Silva, A. F., Lourenço, S. O., & Chaloub, R. M. (2009). Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquatic botany, 91(4), 291-297. DOI: https://doi.org/10.1016/j.aquabot.2009.08.001

Dean, A. P., Sigee, D. C., Estrada, B., & Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource technology, 101(12), 4499-4507. DOI: https://doi.org/10.1016/j.biortech.2010.01.065

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. DOI: https://doi.org/10.1021/ac60111a017

Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237-240. DOI: https://doi.org/10.1126/science.281.5374.237

Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry, 226(1), 497-509. DOI: https://doi.org/10.1016/S0021-9258(18)64849-5

Gerasimenko, N., Busarova, N., & Moiseenko, O. (2010). Seasonal changes in the content of lipids, fatty acids, and pigments in brown alga Costaria costata. Russian journal of plant physiology, 57(2), 205-211. DOI: https://doi.org/10.1134/S102144371002007X

Grobbelaar, N. (2014). Rising powers in international development: the state of the debate in South Africa.

Guil-Guerrero, J., Navarro-Juárez, R., López-Martınez, J., Campra-Madrid, P., & Rebolloso-Fuentes, M. (2004). Functional properties of the biomass of three microalgal species. Journal of food engineering, 65(4), 511-517. DOI: https://doi.org/10.1016/j.jfoodeng.2004.02.014

Guillard, R. R., & Ryther, J. H. (1962). Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology, 8(2), 229-239. DOI: https://doi.org/10.1139/m62-029

Hatree, E. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem., 48, 422-427. DOI: https://doi.org/10.1016/0003-2697(72)90094-2

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The plant journal, 54(4), 621-639. DOI: https://doi.org/10.1111/j.1365-313X.2008.03492.x

Kalpa W. S., Ju-Young Ko, Md. Mahfuzur R. Shah, Ji-Hyeok Lee, Min-Cheol K., Kwon O-Nam, Joon-Neda S., Ali M.L, N. Alnajar, Mehrouz D., Shadman S., Mohammad H. and Ali C. .(2015). Biochemical and Physiological Characterization of Tree Microalgae spp. as Candidates for Food Supplement. Journal of Applied Biotechnology Reports, Volume 3, Issue 1, Winter ; 377-381.

Kaye, Y., Grundman, O., Leu, S., Zarka, A., Zorin, B., Didi-Cohen, S., Khozin-Goldberg, I., & Boussiba, S. (2015). Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: Overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal research, 11, 387-398. DOI: https://doi.org/10.1016/j.algal.2015.05.003

Lee Chang, K. J., Nichols, P. D., & Blackburn, S. I. (2013). More than biofuels–Potential uses of microalgae as sources of high‐value lipids. Lipid Technology, 25(9), 199-203. DOI: https://doi.org/10.1002/lite.201300295

Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and biotechnology, 81(4), 629-636. DOI: https://doi.org/10.1007/s00253-008-1681-1

Lim, D. K., Garg, S., Timmins, M., Zhang, E. S., Thomas-Hall, S. R., Schuhmann, H., Li, Y., & Schenk, P. M. (2012). Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS ONE, 7(7), e40751. DOI: https://doi.org/10.1371/journal.pone.0040751

Lourenco, S. O., Barbarino, E., Mancini-Filho, J., Schinke, K. P., & Aidar, E. (2002). Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia, 41(2), 158-168. DOI: https://doi.org/10.2216/i0031-8884-41-2-158.1

Lourenço, S. O., Barbarino, E., Marquez, U. M. L., & Aidar, E. (1998). Distribution of intracellular nitrogen in marine microalgae: basis for the calculation of specific nitrogen‐to‐protein conversion factors. Journal of Phycology, 34(5), 798-811. DOI: https://doi.org/10.1046/j.1529-8817.1998.340798.x

Lourenço, S. O., & Vieira, A. A. (2004). Culture collections of microalgae in Brazil: progress and constraints. Nova Hedwigia, 149-173. DOI: https://doi.org/10.1127/0029-5035/2004/0079-0149

MA, B. (1988). Vitamins and fine chemicals from Microalgae: Borowitzka, MA and Borowitzka, LJ, Cambridge University Press

Machado, R., & Lourenço, S. (2008). Propriedades nutricionais de microalgas usadas como alimento de moluscos bivalves: uma revisão. Museu Nacional. Série Livros, 30, 281-304.

Malakootian, M., Hatami, B., Dowlatshahi, S., & Rajabizadeh, A. (2015). Optimization of culture media for lipid production by Nannochloropsis oculata for Biodiesel production. Environmental Health Engineering and Management Journal, 2(3), 141-147.

Millán-Oropeza, A., Torres-Bustillos, L. G., & Fernández-Linares, L. (2015). Simultaneous effect of nitrate (NO3-) concentration, carbon dioxide (CO2) supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata. Biofuel Research Journal, 2(1), 215-221. DOI: https://doi.org/10.18331/BRJ2015.2.1.8

Myklestad, S., & Haug, A. (1972). Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium. Journal of Experimental Marine Biology and Ecology, 9(2), 125-136. DOI: https://doi.org/10.1016/0022-0981(72)90041-X

Olofsson, M., Lamela, T., Nilsson, E., Bergé, J.-P., Del Pino, V., Uronen, P., & Legrand, C. (2014). Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Marine drugs, 12(4), 1891-1910. DOI: https://doi.org/10.3390/md12041891

Otero, A., & Fábregas, J. (1997). Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture, 159(1-2), 111-123. DOI: https://doi.org/10.1016/S0044-8486(97)00214-7

Ötleş, S., & Pire, R. (2001). Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC international, 84(6), 1708-1714. DOI: https://doi.org/10.1093/jaoac/84.6.1708

Paes, C. R., Faria, G. R., Tinoco, N. A., Castro, D. J., Barbarino, E., & Lourenço, S. O. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Latin American Journal of Aquatic Research, 44(2), 275-292. DOI: https://doi.org/10.3856/vol44-issue2-fulltext-9

Patil, V., Reitan, K. I., Knutsen, G., Mortensen, L. M., Källqvist, T., Olsen, E., Vogt, G., & Gislerød, H. R. (2005). Microalgae as source of polyunsaturated fatty acids for aquaculture. Plant Biol, 6(6), 57-65.

Radwan, S. (1978). Coupling of two-dimensional thin-layer chromatography with gas chromatography for the quantitative analysis of lipid classes and their constituent fatty acids. Journal of Chromatographic Science, 16(11), 538-542. DOI: https://doi.org/10.1093/chromsci/16.11.538

Rausch, T. (1981). The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 78(3), 237-251. DOI: https://doi.org/10.1007/BF00008520

Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering, 102(1), 100-112. DOI: https://doi.org/10.1002/bit.22033

Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., & Pontalier, P.-Y. (2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of applied phycology, 25(2), 523-529. DOI: https://doi.org/10.1007/s10811-012-9886-1

Safi, C., Charton, M., Ursu, A. V., Laroche, C., Zebib, B., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Release of hydro-soluble microalgal proteins using mechanical and chemical treatments. Algal research, 3, 55-60. DOI: https://doi.org/10.1016/j.algal.2013.11.017

Soletto, D., Binaghi, L., Lodi, A., Carvalho, J., & Converti, A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243(1-4), 217-224. DOI: https://doi.org/10.1016/j.aquaculture.2004.10.005

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering, 101(2), 87-96. DOI: https://doi.org/10.1263/jbb.101.87

Templeton, D. W., & Laurens, L. M. (2015). Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel. Algal research, 11, 359-367. DOI: https://doi.org/10.1016/j.algal.2015.07.013

Traller, J. C., & Hildebrand, M. (2013). High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal research, 2(3), 244-252. DOI: https://doi.org/10.1016/j.algal.2013.03.003

Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796-799. DOI: https://doi.org/10.1126/science.1189003

Zeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 15(6), 3252-3260 DOI: https://doi.org/10.1016/j.rser.2011.04.014

Downloads

Published

2021-03-31 — Updated on 2021-03-31

How to Cite

Abougrara, A. M. . (2021). Effects of Different Levels of Urea as Nitrogen Source on Chemical Composition of Marine Microalgae Nannochloropsis oculata. Al-Mukhtar Journal of Sciences, 36(1), 1–11. https://doi.org/10.54172/mjsc.v36i1.5

Issue

Section

Research Articles

Categories