Sensitivity testing of Pseudomonas aeruginosa to Asparagopsis taxiformis extracts

Authors

  • Sami M. salih Department of Biology, Faculty of Education, Omar Al-Mukhtar University, Libya
  • Ahmed A. Abdulrraziq Department of Biology, Faculty of Education, Omar Al-Mukhtar University, Libya

DOI:

https://doi.org/10.54172/mjsc.v37i2.553

Keywords:

Pseudomonas aeruginosa, taxiformis Asparagopsis , Antibiotic

Abstract

Pseudomonas aeruginosa has been to possess a unique level of resistance to most antibiotics, therefore made in the list of types to cause infections in Libyan hospitals. This study was conducted to test the sensitivity of three P.aeruginosa isolates from different infections: infection tract urinary (U), Wound infection (W), Diarrhoea (D), to aqueous and ethanol extracts of Asparagopsis taxiformis at a concentration of (50, 100) mg/ml,  compared with Neomycin and Gentamycin. The results showed the sensitivity of all P.aeruginosa isolates to A.taxiformis extracts, superiority is observed of ethanol extract at a concentration of 100 mg/ml on antibiotics and aqueous extract. P.aeruginosa (U) isolates were the most sensitive to extracts, while P.aeruginosa (W) isolates were the most resistant to extracts and antibiotics. The results also showed a resistance of all isolates to gentamycin compared to neomycin. Data in this study indicated to possibility use of Asparagopsis taxiformis could be a valid alternative for bio-control of Pseudomonas aeruginosa.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdulrraziq, A. A., & Salih, S. M. (2020). Biological Effect of Posidonia oceanica Seaweed on Some Pathogenic Microbes. Al-Mukhtar Journal of Sciences, 35(4), 339-346. DOI: https://doi.org/10.54172/mjsc.v35i4.343

Al-Obaidi, R. D., & Al-Dahmoshi, H. (2020). Biofilm and antibiotic resistance profile among Pseudomonas aeruginosa isolated from clinical samples. Eurasia J Biosci, 14(1), 1135-1139.

Alnour, I., Wagiran, H., Ibrahim, N., Hamzah, S., & Elias, M. (2017). Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process. AIP Conference Proceedings, DOI: https://doi.org/10.1063/1.4972913

Alshalmani, S. K., Zobi, N. H., & Bozakouk, I. H. (2014). Antibacterial activity of Libyan seaweed extracts. International Journal of Pharmaceutical Sciences and Research, 5(12), 5425.

Bansemir, A., Blume, M., Schröder, S., & Lindequist, U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252(1), 79-84. DOI: https://doi.org/10.1016/j.aquaculture.2005.11.051

Bazairi, H., Sghaier, Y. R., Benamer, I., Langar, H., Pergent, G., Bouras, E., Verlaque, M., Soussi, J. B., & Zenetos, A. (2013). Alien marine species of Libya: first inventory and new records in El-Kouf National Park (Cyrenaica) and the neighbouring areas. Mediterranean marine science, 451-462. DOI: https://doi.org/10.12681/mms.555

Bhuyar, P., Rahim, M., Sundararaju, S., Maniam, G., & Govindan, N. (2020). Antioxidant and antibacterial activity of red seaweed Kappaphycus alvarezii against pathogenic bacteria. Global Journal of Environmental Science and Management, 6(1), 47-58.

Cabot, G., Zamorano, L., Moyà, B., Juan, C., Navas, A., Blázquez, J., & Oliver, A. (2016). Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrobial agents and chemotherapy, 60(3), 1767-1778. DOI: https://doi.org/10.1128/AAC.02676-15

Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M., & Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life, 10(3), 19. DOI: https://doi.org/10.3390/life10030019

Dayuti, S. (2018). Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP conference series: earth and environmental science, DOI: https://doi.org/10.1088/1755-1315/137/1/012074

Hayee-Memon, A., & Shameel, M. (1996). A taxonomic study of some red algae commonly growing on the coast of Karachi.

Kılınç, Ç., Güçkan, R., Çepni, M., Aydın, O., & Çatakoğlu, A. H. (2015). Antibacterial Resistance in Pseudomonas aeruginosa Strains Isolated from Various Clinical Samples. Respiration, 104, 31.38.

Lavoie, E. G., Wangdi, T., & Kazmierczak, B. I. (2011). Innate immune responses to Pseudomonas aeruginosa infection. Microbes and infection, 13(14-15), 1133-1145. DOI: https://doi.org/10.1016/j.micinf.2011.07.011

Madkour, F., A El-Shoubaky, G., & A Ebada, M. (2019). Antibacterial activity of some seaweeds from the Red Sea coast of Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 23(2), 265-274. DOI: https://doi.org/10.21608/ejabf.2019.31016

Manilal, A., Sujith, S., Kiran, G. S., Selvin, J., Shakir, C., Gandhimathi, R., & Lipton, A. P. (2009). Antimicrobial potential and seasonality of red algae collected from the southwest coast of India tested against shrimp, human and phytopathogens. Annals of Microbiology, 59(2), 207-219. DOI: https://doi.org/10.1007/BF03178319

Marino, F., Di Caro, G., Gugliandolo, C., Spano, A., Faggio, C., Genovese, G., Morabito, M., Russo, A., Barreca, D., & Fazio, F. (2016). Preliminary study on the in vitro and in vivo effects of Asparagopsis taxiformis bioactive phycoderivates on teleosts. Frontiers in physiology, 7, 459. DOI: https://doi.org/10.3389/fphys.2016.00459

Pushparaj, A., Raubbin, R., & Balasankar, T. (2014). An antibacterial activity of the green seaweed Caulerpha sertularioides using five different solvents. International of Journal PharmTech Research, 6, 01-05.

Roque, B. M., Venegas, M., Kinley, R. D., de Nys, R., Duarte, T. L., Yang, X., & Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PloS one, 16(3), e0247820. DOI: https://doi.org/10.1371/journal.pone.0247820

Sun, Z., Jiao, X., Peng, Q., Jiang, F., Huang, Y., Zhang, J., & Yao, F. (2013). Antibiotic resistance in Pseudomonas aeruginosa is associated with decreased fitness. Cellular Physiology and Biochemistry, 31(2-3), 347-354. DOI: https://doi.org/10.1159/000343372

Vedhagiri, K., Manilal, A., Valliyammai, T., Shanmughapriya, S., Sujith, S., Selvin, J., & Natarajaseenivasan, K. (2009). Antimicrobial potential of a marine seaweedAsparagopsis taxiformis againstLeptospira javanica isolates of rodent reservoirs. Annals of Microbiology, 59(3), 431-437. DOI: https://doi.org/10.1007/BF03175127

Vitale, F., Genovese, G., Bruno, F., Castelli, G., Piazza, M., Migliazzo, A., Minicante, S. A., Manghisi, A., & Morabito, M. (2015). Effectiveness of red alga Asparagopsis taxiformis extracts against Leishmania infantum. Open Life Sciences, 10(1). DOI: https://doi.org/10.1515/biol-2015-0050

Zenetos, A., Gofas, S., Verlaque, M., Çinar, M. E., García Raso, J. E., Bianchi, C., Morri, C., Azzurro, E., Bilecenoglu, M., & Froglia, C. (2010). Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union's Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. DOI: https://doi.org/10.12681/mms.87

Published

2022-06-30

How to Cite

salih س. م., & Abdulrraziq أ. ا. (2022). Sensitivity testing of Pseudomonas aeruginosa to Asparagopsis taxiformis extracts. Al-Mukhtar Journal of Sciences, 37(2), 168–174. https://doi.org/10.54172/mjsc.v37i2.553

Issue

Section

Research Articles

Categories