Reference Evapotranspiration Mapping of Libya

Authors

  • Ali Alagab Ikhneifir Department of Soil and Water, Faculty of Agriculture, Omar Al-Mukhtar University, Libya
  • Hafid M. Y. Bubareek Department of Agriculture Engineering, Faculty of Agriculture, Omar Al-Mukhtar University Libya
  • Fouad M. H Balomi Department of Water, Higher Institute of Agricultural Technologies, Derna

DOI:

https://doi.org/10.54172/mjsc.v38i2.672

Keywords:

Reference evapotranspiration mapping, NASA agency, spatial interpolation

Abstract

Estimation of evapotranspiration plays a essential role in water resource management. Therefore, understanding the spatial and temporal variation pattern of reference evapotranspiration (ETO) is crucial for the proper management of water resources and prioritization of their use. This study was conducted to obtain maps showing the reference evapotranspiration values for the area confined between latitudes 19.45o and 33.16o north, and longitudes 9.4o and 25.15o east, which includes the entire area of Libya. Reference Evapotranspiration values were estimated using the Omar Al-Mukhtar University Omu-ET model.1.0.0 based on climate data for the period from 1990 to 2020, represented by (temperature, relative humidity, wind speed, and short-wave solar radiation), which were extracted from the NASA website (The Power Project) for the selected 288 locations. To produce the best digital map of ETO values ​​and climate data, The spatial interpolation methods (IDW, Kriging, Spline) in Geographic Information Systems (GIS) software were compared using spatial statistical interpolation techniques (Mean Error ME and Square Root Mean Error RMSE), and the Spline method was adopted as the best method for interpolation mapping as it gave the smallest RMSE value and the lowest ME value if compared to the results of IDW and Kriging. The ETO results obtained from Omu-ET model.1.0.0 were used to prepare a computer model in Arabic and English using Microsoft Excel and the Visual Basic for Applications programming language, which was named ETO Libya. ETO Libya Provides ETO values monthly and annually for any point located within the area of Libya which requires only the location coordinates.

Downloads

Download data is not yet available.

References

اخنيفر، علي العقاب، وبوبريق، حافظ محمد، و بلومي، فؤاد محمد، (2018A). نموذج جامعة عمر المختار لحساب الاحتياجات المائية للري. المؤتمر العلمي الخامس للبيئة والتنمية المستدامة في المناطق القاحلة وشبه القاحلة (ICESD) - من 23-25. يوليو. 2018 - اجدابيا – ليبيا. https://www.merefa2000.com/2019/09/blog-post_65.html

Aboelkhair, H., M. Morsy, and G. El Afandi, (2019): Assessment of agroclimatology NASA POWER reanalysis datasets for temperature types and relative humidity at 2 m against ground observations over Egypt. Advances in Space Research, 64, 129–142, DOI: https://doi.org/10.1016/j.asr.2019.03.032

Al-Haram, F. (1995). Topography and geomorphology. Geography of Libya (ID) Al-Hadi Abo-Lohmah. Al-Dar Al-Jamahiriya LL-Nashir, 101-120.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

Babu, B. S. (2016). Comparative Study on the Spatial Interpolation Techniques in GIS. International. Journal of Scientific & Engineering Research, 7, (2), February-2016 ISSN 2229-5518.

Ben-Mahmoud, K. (1993). The Libyan soil; composition, classification, properties, and agricultural potential. National Authority for Scientific Research, Benghazi, Libya, 47.

Blackie, J., & Simpson, T. (1993). Climatic variability within the Balquhidder catchments and its effect on Penman potential evaporation. Journal of Hydrology, 145(3-4), 371-387. DOI: https://doi.org/10.1016/0022-1694(93)90064-G

Croitoru, A.-E., Piticar, A., Dragotă, C. S., & Burada, D. C. (2013). Recent changes in reference evapotranspiration in Romania. Global and Planetary Change, 111, 127-136. DOI: https://doi.org/10.1016/j.gloplacha.2013.09.004

Doorenbos, J., & Pruitt, W. O. (1977). Guidelines for predicting crop water requirements. Irrigation and Drainage Paper (FAO).

El-Shirbeny, M. A., & Abdellatif, B. (2017). Reference evapotranspiration borders maps of Egypt based on kriging spatial statistics method. GEOMATE Journal, 13(37), 1-8. DOI: https://doi.org/10.21660/2017.37.63048

Gómez, J., Etchevers, J., Monterroso, A., Gay, C., Campo, J., & Martínez, M. (2008). Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information. Atmósfera, 21(1), 35-56.

GÜler, M. (2014). A comparison of different interpolation methods using the geographical information system for the production of reference evapotranspiration maps in Turkey. Journal of the Meteorological Society of Japan. Ser. II, 92(3), 227-240. DOI: https://doi.org/10.2151/jmsj.2014-303

Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319(1-4), 83-95. DOI: https://doi.org/10.1016/j.jhydrol.2005.07.003

Jed, M., Ihaddadene, N., Jed, M. E. H., Ihaddadene, R., & El Bah, M. (2022). Validation of the Accuracy of NASA Solar Irradiation Data for Four African Regions. Planning, 17(1), 29-39. DOI: https://doi.org/10.18280/ijsdp.170103

Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice no. 70. 332 pp.

Kamali, M. I., Nazari, R., Faridhosseini, A., Ansari, H., & Eslamian, S. (2015). The determination of reference evapotranspiration for spatial distribution mapping using geostatistics. Water Resources Management, 29, 3929-3940. DOI: https://doi.org/10.1007/s11269-015-1037-4

Keane, R. E., Parsons, R. A., & Hessburg, P. F. (2002). Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach. Ecological Modelling, 151(1), 29-49. DOI: https://doi.org/10.1016/S0304-3800(01)00470-7

McVicar, T. R., & Jupp, D. L. (1998). The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agricultural systems, 57(3), 399-468. DOI: https://doi.org/10.1016/S0308-521X(98)00026-2

Monteiro, L. A., Sentelhas, P. C., & Pedra, G. U. (2018). Assessment of NASA/POWER satellite‐based weather system for Brazilian conditions and its impact on sugarcane yield simulation. International Journal of Climatology, 38(3), 1571-1581. DOI: https://doi.org/10.1002/joc.5282

Negm, A., Minacapilli, M., & Provenzano, G. (2018). Downscaling of American National Aeronautics and Space Administration (NASA) daily air temperature in Sicily, Italy, and effects on crop reference evapotranspiration. Agricultural Water Management, 209, 151-162. DOI: https://doi.org/10.1016/j.agwat.2018.07.016

Purnadurga, G., Kumar, T. L., Rao, K. K., Barbosa, H., & Mall, R. (2019). Evaluation of evapotranspiration estimates from observed and reanalysis data sets over Indian region. International Journal of Climatology, 39(15), 5791-5800. DOI: https://doi.org/10.1002/joc.6189

Raupach, M. R., Briggs, P. R., Haverd, V., King, E. A., Paget, M. J., & Trudinger, C. M. (2009). Australian water availability project (AWAP): CSIRO marine and atmospheric research component: final report for phase 3. Centre for Australian Weather and Climate Research Canberra, Australia.

Raziei, T., & Pereira, L. S. (2013). Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agricultural Water Management, 126, 104-118. DOI: https://doi.org/10.1016/j.agwat.2013.05.003

Rodrigues, G. C., & Braga, R. P. (2021a). Estimation of daily reference evapotranspiration from NASA POWER reanalysis products in a hot summer mediterranean climate. Agronomy, 11(10), 2077. DOI: https://doi.org/10.3390/agronomy11102077

Rodrigues, G. C., & Braga, R. P. (2021b). Evaluation of NASA POWER reanalysis products to estimate daily weather variables in a hot summer mediterranean climate. Agronomy, 11(6), 1207. DOI: https://doi.org/10.3390/agronomy11061207

Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233-248. DOI: https://doi.org/10.1016/j.agrformet.2014.09.016

Tayyeh, H. K., & Mohammed, R. (2023). Analysis of NASA POWER reanalysis products to predict temperature and precipitation in Euphrates River basin. Journal of Hydrology, 619, 129327. DOI: https://doi.org/10.1016/j.jhydrol.2023.129327

Valeriano, T. T. B., de Souza Rolim, G., Bispo, R. C., da Silva Cabral de Moraes, J. R., & Aparecido, L. E. d. O. (2019). Evaluation of air temperature and rainfall from ECMWF and NASA gridded data for southeastern Brazil. Theoretical and Applied Climatology, 137, 1925-1938. DOI: https://doi.org/10.1007/s00704-018-2706-z

Vicente‐Serrano, S. M., Lanjeri, S., & López‐Moreno, J. I. (2007). Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression‐based techniques. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(8), 1103-1118. DOI: https://doi.org/10.1002/joc.1460

White, J. W., Hoogenboom, G., Stackhouse Jr, P. W., & Hoell, J. M. (2008). Evaluation of NASA satellite-and assimilation model-derived long-term daily temperature data over the continental US. Agricultural and Forest Meteorology, 148(10), 1574-1584. DOI: https://doi.org/10.1016/j.agrformet.2008.05.017

White, J. W., Hoogenboom, G., Wilkens, P. W., Stackhouse Jr, P. W., & Hoel, J. M. (2011). Evaluation of satellite‐based, modeled‐derived daily solar radiation data for the continental United States. Agronomy journal, 103(4), 1242-1251. DOI: https://doi.org/10.2134/agronj2011.0038

Published

2023-06-30

How to Cite

Ikhneifir, A. A., Bubareek, H. M. Y., & Balomi, F. M. H. (2023). Reference Evapotranspiration Mapping of Libya. Al-Mukhtar Journal of Sciences, 38(2), 201–214. https://doi.org/10.54172/mjsc.v38i2.672

Issue

Section

Research Articles

Categories