Control of Decay of Apple Fruits Used by Calcium & Sodium Chloride Salts

Authors

  • Z. I El – Gali Department of plant protection, Faculty of Agriculture, Omar Al-Mukhtar University, Al-Bayda, Libya

DOI:

https://doi.org/10.54172/mjsc.v20i1.827

Abstract

Apple (Malus domestica Borkh) fruits were infiltrated with calcium chloride and sodium chloride solutions to provide protection against B. cinerea and P. expansum. Both salts reduced decay caused by two fungi during incubation period. Calcium chloride (8%) and sodium chloride (4%) were more effective and B. cinerea was more affected  than P. expansum.

Downloads

Download data is not yet available.

References

Abbott, J.A.; Conway, W.S. and Sams, C.E. (1989). Postharvest calcium chloride infiltration affects textural attributes of apples. J. Am. Soc. Hortic. Sci., 114: 932- 936. DOI: https://doi.org/10.21273/JASHS.114.6.932

Bateman, D.F. and Lumsden, R.D. (1965). Relation of calcium content and nature of the pectic substances in bean hypocotyls of different ages to susceptibility of an isolate of Rhizoctonia solani. Phytopath. 55: 734-738.

Biggs, M.; El-Kholi, M., El-Neshawy, S. and Nickerson, R. (1997). Effect of calcium salts on growth, polygalactronase activity and infection of peach fruits by Monilinia fructicola. Plant Dis. 81: 399- 403. DOI: https://doi.org/10.1094/PDIS.1997.81.4.399

Brown, A. G. (1984). Relationship of endopolygalactronase inhibitior activity to rate of fungal rot development in apple fruits. Phytopath. Z. 111: 122- 132. DOI: https://doi.org/10.1111/j.1439-0434.1984.tb00485.x

Bullerman, L. B. (1985). Effect of potassium cies. J. of Food Protec. 48: 162- 165. DOI: https://doi.org/10.4315/0362-028X-48.2.162

Byrde, R. J. W. (1969). Non aromatic organics. Pagesorbet on growth and ochratoxin production by Aspergillus ochraceus and Penicillium spes: 531- 578 in: Fungicides, An Advanced Treatise. Vol. 2. D. C. Torgeson, ed. Academic Press, New York.

Chardonnet, C.O.; Sams, C.E.; Trigiano, R.N. and Conway, W.S. (2000). Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopath., 90:769-774. DOI: https://doi.org/10.1094/PHYTO.2000.90.7.769

Conway, W. S. (1982). Effect of postharvest calcium treatment on decay of Delicious apples. Plant Dis. 66: 402- 403. DOI: https://doi.org/10.1094/PD-66-402

Conway, W. S. and Sams, C. E. (1983). Calcium infiltration of Golden Delicious apples and its effect on decay. Phytopath. 73: 1068- 1071. DOI: https://doi.org/10.1094/Phyto-73-1068

Conway, W. S. and Sams, C. E. (1984). Possible mechanisms by which postharvest calcium treatment reduces decay in apple. Phytopath. 74: 208- 210. DOI: https://doi.org/10.1094/Phyto-74-208

Conway, W. S.; Sams, C. E.; Mc Guire, R. G. and Kelman, A. (1992). Calcium treatment of apples and potatoes to reduce postharvest decay. Plant Dis. 76: 329- 334. DOI: https://doi.org/10.1094/PD-76-0329

Eckert, J. and Ogawa, J.M. (1985). The chemical control of postharvest diseases: Subtropical and tropical fruits. Ann. Rev. Phytopath., 23:424-454. DOI: https://doi.org/10.1146/annurev.py.23.090185.002225

Gourama, H. (1997). Inhibition of growth and mycotoxins production of Penicillium by Lactobacillius species. Food Sci and Thech. 30: 279- 283. DOI: https://doi.org/10.1006/fstl.1996.0183

Hrazdina, G.; Borejsza-Wysoki, W. and Lester, C. (1997). Phytoalexine production in an apple cultivar resistant to Venturia inaeqalis. Phytopath., 87: 868-876. DOI: https://doi.org/10.1094/PHYTO.1997.87.8.868

Janisiewicz, W.J. (1999). Blue mold, Penicillium spp. Fruit Disease Focus. Internet explorer.

Jones, A., and Aldwinckle, H. (1990). Compendium of apple and peardiseases. APS Press, St. Paul, Minn.

Kaile, A.; Pitt, D. and Khum, P. J. (1992). Calcium cytoxicity, protoplast viability and the role of calcium in soft- rot of Brassica napus due to Botrytis cinerea Pers. Physiol. Mol. Plant Path. 40: 49- 62. DOI: https://doi.org/10.1016/0885-5765(92)90071-3

Koffmann, W., and Penrose, L.J. 1987. Fungicides for the control of blue mold (Penicilllium spp.) in pome fruits. Sci. Hortic., 31: 225–232. DOI: https://doi.org/10.1016/0304-4238(87)90047-1

Kohle, H.; Jeblick, W.; Poten, F.; Blaschek, W. and Kausas, H. (1985). Chitosan- elicited cullose synthesis in soybean cells as a Ca+2 dependent process. Plant Physiol. 77: 544- 551. DOI: https://doi.org/10.1104/pp.77.3.544

Kritzman, G. and Chet, I. (1980). The role of phenols in the pathogenicity of Botrytis allii. Phytopar., 8:27-37. DOI: https://doi.org/10.1007/BF02986233

Larous, L.; Hendel, N.; Abood, J. K. and Ghoul, M. (2007). The growth and production of patulin mycotoxins by Penicillium expansum on apple fruits and its control by use of propionic acid and sodium benzoait. Arab J. of Plant Protec. 25(1): 123- 128.

Macfoy, C.A. and Smith, I.M. (1985). Interrelationship between nutrients, pathogenicity, and phytoalexin metabolism of Botrytis cinerea on clover leaves. Phytopath., 116:193-200. DOI: https://doi.org/10.1111/j.1439-0434.1986.tb00911.x

Malone, J.P. and Muskett, A.E. (1997). Description of 77 fungus species. Zurich, Switzerland. Pp. 191.

Mohamed, N.; Lherminier, J.; Farmer, M. J.; Fromentin, J.; Béno, N.; Houto, V.; Milat, M. L. and Belin, J. P. (2007). Defense response in graperine leaves against Botrytis cinerea induced by applications of Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopath. 97: 611- 620. DOI: https://doi.org/10.1094/PHYTO-97-5-0611

National Research Council, Board on Agriculture, Committee on Scientific and Regulatory Issues Underlying Pesticide Use Patterns and Agricultural Innovation. (1987). Regulating Pesticides in Food, The Delaney Paradox. National Academy Press, Washington, DC.

Palou, L.; Usall, J.; Smilonick, J. L.; Aguilar, M.J. and Vinâs, I. (2002). Evaluation of food additives and low toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruits. Pest Mange. Sci. 58: 459- 466. DOI: https://doi.org/10.1002/ps.477

Poovaiah, B. W.; Glenn, G. M. and Reddy, A. S. N. (1988).Calcium and fruit softening: physiology and biochemistry. Hortic. Rev. 10: 107- 151. DOI: https://doi.org/10.1002/9781118060834.ch4

Snedecor, G. W. and Gochran, W. G. (1981). Statistical methods 7th edition Lowa state Univ. Press, Ames, Lowa, USA.

Vinâs, I.; Usall, J.; Teixido, N. and Sanchis, V. (1998). Biological control of major postharvest pathogen on apple with Candida satke. I. J. of Food Microbiol. 40: 9- 16. DOI: https://doi.org/10.1016/S0168-1605(98)00009-9

Wisniewski, M.; Wilson, C.; El Ghaouth, A. and Droby, S. (2007). Non chemical approaches to postharvest disease control. I. Soc. Hortic. Sci.,:11: 120-142.

Zhou, T.; Chu, C.L.; Liu, W.T. and Schneider, K.E. (2001). Postharvest control of blue mold and gray mold on apples using isolates of Pseudomonas syringae. Can. J. Plant Pathol., 23: 246-252. DOI: https://doi.org/10.1080/07060660109506937

Published

2008-12-31

How to Cite

El – Gali, . Z. I. (2008). Control of Decay of Apple Fruits Used by Calcium & Sodium Chloride Salts. Al-Mukhtar Journal of Sciences, 20(1), 97–111. https://doi.org/10.54172/mjsc.v20i1.827

Issue

Section

Research Articles

Categories