Prevalence and Distribution of Pine Processionary Moth (Thaumetopoea pityocampa) in Shahat’s Aleppo Pine (Pinus halepensis) Plantations, Al-JabalAl-Akhdar, Libya


  • Attia Alsanousi Department of Forests and Rangelands, Faculty of Natural Resources and Environmental Sciences, Omar Al-Mukhtar University.
  • Younes Hamad Sheip Department of Natural Resources, Faculty of Natural Resources and Environmental Sciences, University of Derna. Al-Gubah - Libya



Pine proces-sionary PPM, Thaumetopoea pityocampa , Spatial distribution, P. halepensis, Shahat area, Al-Jabal Al-Akhdar, Libya


The current study aims at investigating the spatial distribution of  pine processionary moth (PPM) in parts of Al-Jabal Al-Akhdar region in Libya (in Shahat area). Two Pinus halepensis stands in the area (in Al-Mansurra and the ancient city of Cyrene) were chosen for field data collection. Growth parameters for pine trees including; tree height, crown height, diameter at breast height, stand density level, location within the stand, health condition, in addition to the observed number of PPM nests per tree were recorded. Pearson correlation coefficient analysis and variance analysis were applied to assess the relationship between obtained variables, and evaluate growth conditions for both stands. Results revealed relatively better growth conditions at Al-Mansurra site compared to Cyrene site. Moreover, PPM nests occurrence was positively correlated with trees growing isolated or on the stand edge (r = 0.54, P value <.001), and negatively correlated with tree height (r = - 0.4, P value <.001) emphasizing more dispersal rate among young pine trees. Crown height, dbh, and tree’s health condition showed no significant effect on PPM spread in the area. In-depth investigations of the population dynamics of PPM are highly recommended to provide insights into their spatial distribution in the region.   


Download data is not yet available.


Alsanousi, A., & Ali, A. M. (2018). Age Structure and Current Status of Aleppo Pine ( Pinus halepensis ) Trees on the Western Side of Sidi Alhumry Pine Plantation in Aljabal Al-Akhdar Region. Al-Mukhtar Journal of Sciences., 33(3), 185-191.

Avalos, G., Salazar, D., & Araya, A. L. (2005). Stilt Root Structure in the Neotropical Palms Iriartea deltoidea and Socratea exorrhiza. Biotropica: The Journal of Biology and Conservation, 37(1), 44-53.

Avtzis, D. N., Papachristos, D. P., & Michaelakis , A. (2016). Pine processionary moths in Greece refined: introduction and population structure of Thaumetopoea pityocampa mtDNA ENA clade in Attica, Greece. Journal of Pest Science, 89, 393–402.

Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., & Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological applications, 15(6), 2084-2096.

Benigni, M., & Battisti, A. (1999). Climate change and the pine processionary caterpillar: adaptation of a defoliator to changing environmental conditions. Italia Forestale e Montana, 54(2), 76-86.

Bonsignore, C. P., Manti, F., & Castiglione, E. (2015). nteractions between pupae of the pine processionary moth (Thaumetopoea pityocampa) and parasitoids in a Pinus forest. Bulletin of Entomological Research, 105(5), 621-628.

Bourougaaoui, A., Ben Jamâa, M. L., & Robinet, C. (2021). Has North Africa turned too warm for a Mediterranean forest pest because of climate change? Climatic Change, 165(46).

Buffo, E., Battisti, A., Stastny, M., & Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology., 9(1), 65-72.

Camarero, J. J., Tardif, J., Gazol, A., & Conciatori, F. (2022). Pine processionary moth outbreaks cause longer growth legacies than drought and are linked to the North Atlantic Oscillation. Science of The Total Environment, 819, 153041.

Carus, S. (2004). mpact of defoliation by the pine processionary moth Thaumetopoea pityocampa on the radial, height and volume growth of Calabrian pine (Pinus brutia) trees in Turkey. . Phytoparasitica , 32(5), 459-469.

Castagneyrola, B., Régolinia, M., & Jactela, H. (2014). Tree species composition rather than diversity triggersassociational resistance to the pine processionary moth. Basic and Applied Ecology, 15(6), 516-523.

Démolin, G. (1969). Bioecologia de la procesionaria del pino Thaumetopoea pityocampa Schiff. Incidencia de los factores climaticos. . Boletin del Servicio de Plagas Forestales., 12, 9-24.

Devkota, B., & Schmidt, G. H. (1990). Larval development of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) from Greece as influenced by different host plants under laboratory conditions. Journal of Applied Entomology, 109, 321-330.

Dulaurent, A. M., Porte, A. J., van Halder, I., Vetillard, F., Menassieu, P., & Jactel, H. (2012). Hide and seek in forests: colonization by the pine processionary moth is impeded by the presence of nonhost trees. gricultural and Forest Entomology., 14(1), 19-27.

El Mokhefi, M., Kerdelhue', C., Burban, C., Battisti, A., Chakali, G., & Simonato, M. (2016). Genetic differentiation of the pine processionary moth at the southern edge of its range: contrasting patterns between mitochondrial and nuclear markers. Ecology and Evolution, 6(13), 4274–4288.

Geri, C., Miller, C., & Xeuxet, D. (1985). Mesure des populations de processionnaire du pin (Thaumetopoea pityocampa Schiff-Lepidoptere Thaumetopoeidae) au Mont-Ventoux. Annales des sciences forestières., 42(2), 143-184.

Goussard, F., Saintonge, F. X., Geri, C., Auger-Rozenberg, M.-A., Pasquier-Barre, F., & Rousselet , J. (1999). Accroissement des risques de dégats de la processionnaire du pin, Thaumetopoea pityocampa Denis Schiff. en région Centre, du au réchauffement climatique (Lepidoptera : Thaumetopoeidae). In Annales de la Société entomologique de France, 35(NS), 341-343.

Hódar, J. A., Castro, J., & Zamora, R. (2003). Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation, 110(1), 123-129.

Huchon, H., & Demolin, G. (1970). La bioécologie de la Processionnaire du pin : dispersion. potentielle, dispersion actuelle. Revue forestière française,, 22(S), 220-234. Retrieved from

Jacquet, J.-S., Orazio, C., & Jactel , H. (2012). Defoliation by processionary moth significantly reduces tree growth: a quantitative review. Annals of Forest Science, 69, 857-866.

Jacquet, J.-S., Bosc, A., O’Grady, A. P., & Jactel, H. (2013). Pine growth response to processionary moth defoliation across a 40-year chronosequence. Forest Ecology and Management, 293, 29-38.

Kerdelhué, C., Zane, L., Simonato, M., Salvato, P., Rousselet, J., Roques, A., & Battisti, A. (2009). Quaternary history and contemporary patterns in a currently expanding species. BMC Evolutionary Biology, 9(220), 1-14.

KESDEK, M., KORDALİ, Ş., BOZHÜYÜK3, A. U., & GÜDEK4, M. (2020). Larvicidal effect of Achillea biebersteinii Afan. (Asteraceae) essential oil against larvae of pine processionary moth, Thaumetopoea pityocampa (Denis & Schiffermüller, 1775) (Lepidoptera: Notodontidae). Turkish Journal of Agriculture and Forestry, 44, 451-460.

Lombardero, M. J., Alonso-Rodríguez, M., & Roca-Posada, E. P. (2012). Tree insects and pathogens display opposite tendencies to attack native vs. non-native pines. Forest Ecology and Management., 281, 121-129.

Mahmoud, K. (1995). Libyan Soils (1st ed.). (1st edition ed.).

Martin, J.-C., Rossi, J.-P., Buradino, M., & Kerdelhué, C. (2021). Monitoring of adult emergence in the pine processionary moth between 1970 and 1984 in Mont Ventoux, France. Biodiversity Data Journal, e61086.

Masutti, L., & Battisti, A. (1990). Thaumetopoea pityocampa (Den. & Schiff.) in Italy Bionomics and perspectives of integrated control. Journal of Applied Entomology, 110(1-5), 229-234.

Moneo, I., Battisti, A., Dufour, B., García-Ortiz, J. C., González-Muñoz, M., Moutou, F., . . . Vega, J. (2015). Medical and Veterinary Impact of the Urticating Processionary Larvae. Processionary Moths and Climate Change : An Update, pp. 359–410.

OMUreport. (2005). Studying and evaluating the natural vegetation of Al-Jabal Al-Akhdar. Albaida, Libya: Omar Al Mukhtar University.

Otsu, K., Pla, M., Vayreda, J., & Brotons, L. (2018). Calibrating the Severity of Forest Defoliation by Pine Processionary Moth with Landsat and UAV Imagery. Sensors, 18(10), 3278.

Quézel, P. (2000). Taxonomy and biogeography of Mediterranean pines (Pinus halepensis and P. brutia). Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin., 1-12.

Régolini, M., Castagneyrol, B., Dulaurent-Mercadal, A.-M., Piou, D., Samalens, J.-C., & Jactel, H. (2014). Effect of host tree density and apparency on the probability of attack by the pine processionary moth. Forest Ecology and Management, 334, 185-192.

Robinet, C., Baier, P., Pennerstorfer, J., Schopf, A., & Roques, A. (2007). Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Global Ecology Biogeography, 16(4), 460-471.

Rosenzweig, C., Casassa , G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., . . . Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. In O. C. M.L. Parry (Ed.), Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (pp. 79-131). Cambridge, UK,: Cambridge University Press.

Sangüesa-Barreda, G., Julio Camarero, J., García-Martín, A., Hernández, R., & de la Riva, J. (2014). Remote-sensing and tree-ring based characterization of forest defoliation and growth loss due to the Mediterranean pine processionary moth. Forest Ecology and Management, 320, 171-181.

Schiller, G. (2000). Ecophysiology of Pinus halepensis Mill. and P. brutia Ten. . Ecology, Biogeography and Management of Mediterranean Pine Forest., 51-65.

Sevim, A., Demir, I., & Demirbag, Z. (2010). Molecular Characterization and Virulence of Beauveria spp. from the Pine Processionary Moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). Mycopathologia(170), 269-277.

Stastny, M., Battisti, A., Petrucco-Toffolo, E., Schlyter, F., & Larsson, S. (2006). Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological entomology, 31(5), 481-490.

Stokes, M. A., & Smiley, T. L. (1968). An introduction to tree-ring dating. Chicago, Illinois: University of Chicago Press.

Vega, M. L., Vega, J., Vega, J. M., Moneo, I., Sánchez, E., & Miranda, A. (2003). Cutaneous reactions to pine processionary caterpillar (Thaumetopoea pityocampa) in pediatric population. Pediatric allergy and immunology, 14(6), 482-486.

Wright, D. D., Jessen, J. H., Burke, P., & de Silva Garza, H. G. (1997). Tree and Liana Enumeration and Diversity on a One-Hectare Plot in Papua New Guinea. Biotropica, 29(3), 250-260.

Zamoum, M. (2002). Quelques éléments pour la préservation la santé des forêts en Algérie. Revue de la forêt algérienne., 4, 4-7de.




How to Cite

Alsanousi, A., & Hamad Sheip , Y. (2022). Prevalence and Distribution of Pine Processionary Moth (Thaumetopoea pityocampa) in Shahat’s Aleppo Pine (Pinus halepensis) Plantations, Al-JabalAl-Akhdar, Libya. Al-Mukhtar Journal of Sciences, 37(4), 394–404.



Research Articles