Impact of Salinity Stress on Germination and Growth of Pea (Pisum sativum L) Plants

Authors

  • Amal F Ehtaiwwesh Department of plant science, University of Zawia, Libya,Department of plant science, University of Zawia, Libya
  • Munira J Emsahel Department of plant science, University of Zawia, Libya,Department of plant science, University of Zawia, Libya

DOI:

https://doi.org/10.54172/mjsc.v35i2.319

Keywords:

Pea (Pisum sativum L.), Salinity Stress, Germination, Growth, Seedling Vigor Index

Abstract

The aim of the present study was to evaluate the effects of salinity stress on germination and growth of pea (Pisum sativum L) plants. A laboratory experiment was conducted to evaluate the effect of salinity stress on germination and growth of pea Pisum sativum L plant. Seeds of pea were sown in Petri dishes and pots and treated with four different levels of salinity (0, 50, 100, and 150mM NaCl) with completely randomized designs in four replications. Results revealed that seeds of pea were able to germinate at low salinity levels (NaCl 50mM NaCl) without a significant decrease in germination and growth traits, at the same time as a severe decrease in those traits were recorded at higher levels of salinity (100 and 150mM NaCl). The results indicated that seed germination and seedling establishment were inhibited due to the decrease of water potential, which results in the decline in water uptake by seeds, and seed germination was prevented by a high level of salinity stress (150mM NaCl). The results pointed out that germination percentage (GP), mean daily germination (MDG), germination speed (GS), and vigor index (SVI) varied under moderate and high salinity levels. All the studied parameters were reduced with increasing the NaCl level. The max and min GP, MDG, GS, and SVI were observed under control conditions (0mM NaCl) and highest salinity level (150mM NaCl) respectively. The same trend was seen in plant growth traits including: plant height, branch number, leaf number, leaf area, and shoot fresh and dry weight. The results provided important reference information for research on the impact of salinity on germination and growth of pea.

Downloads

Download data is not yet available.

References

Abdel-Haleem A. &El-Shaieny H. (2015). Seed germination percentage and early seedling establishment of five [Vigna unguiculata (L.) Walp.] genotypes under salt stress. European J. Exp. Biol., 5(2): 22-32

Abdoli, M., Saeidi, M., & Ezzati, F. (2013). Effect of different seed priming methods on seed vigor and some seedling characteristics of Fennel (Foeniculum vulgare L.).

Ashraf, M., & Waheed, A. (1992). Screening chick-pea (Cicer arietinum L.) for salt tolerance. Der Tropenlandwirt-Journal of Agriculture in the Tropics and Subtropics, 93(1), 45-55.

Bhattacharjee, S. (2008). Triadimefon pretreatment protects newly assembled membrane system and causes up-regulation of stress proteins in salinity stressed Amaranthus lividus L. during early germination. J. Environ. Biol, 29(5), 805-810.

Cheng, X., Deng, G., Su, Y., Liu, J. J., Yang, Y., Du, G. H., ... & Liu, F. H. (2016). Protein mechanisms in response to NaCl-stress of salt-tolerant and salt-sensitive industrial hemp based on iTRAQ technology. Industrial Crops and Products, 83, 444-452. DOI: https://doi.org/10.1016/j.indcrop.2015.12.086

Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop science, 45(2), 437-448. DOI: https://doi.org/10.2135/cropsci2005.0437

Cokkizgin, A. (2013). Effects of Hydro and Osmo-Priming on seed Vigor of pea (Pisum sativum L). seed, 10, 100. DOI: https://doi.org/10.11648/j.aff.20130206.14

Cordovilla, M. D. P., Ligero, F., & Lluch, C. (1999). Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Applied Soil Ecology, 11(1), 1-7. DOI: https://doi.org/10.1016/S0929-1393(98)00132-2

Desoky, E. M., Merwad, A. M., & Elrys, A. S. (2017). Response of pea plants to natural bio-stimulants under soil salinity stress. Am. J. Plant Physiol, 12, 28-37. DOI: https://doi.org/10.3923/ajpp.2017.28.37

Esechie, H. A. (1995). Partitioning of chloride ion in the germinating seed of two forage legumes under varied salinity and temperature regimes. Communications in soil science and plant analysis, 26(19-20), 3357-3370. DOI: https://doi.org/10.1080/00103629509369532

Gairola, K. C., Nautiyal, A. R., & Dwivedi, A. K. (2011). Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Advances in bioresearch, 2(2), 66-71.

Grozeva, S., Kalapchieva, S., & Tringovska, I. (2019). Evaluation of garden pea cultivars to salt stress tolerance. Mechanization in agriculture & Conserving of the resources, 65(4), 150-152.

Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1), 463-499. DOI: https://doi.org/10.1146/annurev.arplant.51.1.463

Hayward, H. E., & Wadleigh, C. H. (1949). Plant growth on saline and alkali soils. In Advances in Agronomy (Vol. 1, pp. 1-38). Academic Press. DOI: https://doi.org/10.1016/S0065-2113(08)60745-2

Hernhdeza, J. A., Olmosa, E., Corpasb, F. J., Sevilla, F., & de1 Riob, L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science, 105(151167), 04047-8.

Hernandez, J. A., Campillo, A., Jimenez, A., Alarcon, J. J., & Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytologist, 141(2), 241-251. DOI: https://doi.org/10.1046/j.1469-8137.1999.00341.x

Hubbard, M., Germida, J., & Vujanovic, V. (2012). Fungal endophytes improve wheat seed germination under heat and drought stress. Botany, 90(2), 137-149. DOI: https://doi.org/10.1139/b11-091

Husen, A., Iqbal, M., & Aref, I. M. (2016). IAA-induced alteration in growth and photosynthesis of pea (L.) plants grown under salt stress Pisum sativum. Journal of Environmental Biology, 37, 421-429.

Hussain, N., Mujeeb, F., Tahir, M., Khan, G. D., Hassan, N. M., & Bari, A. (2002). Effectiveness of Rhizobium under salinity stress. Asian J Plant Sci, 1(1), 12-14. DOI: https://doi.org/10.3923/ajps.2002.12.14

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. DOI: https://doi.org/10.1016/j.jplph.2015.12.011

Johnston, A. M., Tanaka, D. L., Miller, P. R., Brandt, S. A., Nielsen, D. C., Lafond, G. P., & Riveland, N. R. (2002). Oilseed crops for semiarid cropping systems in the northern Great Plains. Agronomy Journal, 94(2), 231-240. DOI: https://doi.org/10.2134/agronj2002.2310

Kaya, M. D., Ç İ Ftci, C. Y., & Kaya, M. (2002). Bakteri Aşılaması ve Azot Dozlarının Bezelye (Pisum sativum L.)'de Verim ve Verim Öğelerine Etkileri.A.O. Ziraat. Fakültesi Tarım Bilimleri Dergisi 8(4): 300-305. DOI: https://doi.org/10.1501/Tarimbil_0000000763

Khan, H. A., Siddique, K. H., Munir, R., & Colmer, T. D. (2015). Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of plant physiology, 182, 1-12. DOI: https://doi.org/10.1016/j.jplph.2015.05.002

Konuşkan, Ö., Gözübenli, H., Atiş, İ., & Atak, M. (2017). Effects of salinity stress on emergence and seedling growth parameters of some maize genotypes (Zea mays L.). Turkish Journal of Agriculture-Food Science and Technology, 5(12), 1668-1672. DOI: https://doi.org/10.24925/turjaf.v5i12.1668-1672.1664

López-Aguilar, R., Orduño-Cruz, A., Lucero-Arce, A., Murillo-Amador, B., & Troyo-Diéguez, E. (2003). Response to salinity of three grain legumes for potential cultivation in arid areas. Soil science and plant nutrition, 49(3), 329-336. DOI: https://doi.org/10.1080/00380768.2003.10410017

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158. DOI: https://doi.org/10.1016/j.abb.2005.10.018

Mahmood, A., Athar, M., Qadri, R., & Mahmood, N. (2008). Effect of NaCl salinity on growth, nodulation and total nitrogen content in Sesbania sesban. Agriculturae Conspectus Scientificus, 73(3), 137-141.

Majid, A., Mohsen, S., Mandana, A., Saeid, J. H., Ezatollah, E., & Fariborz, S. (2013). The effects of different levels of salinity and indole-3-acetic acid (IAA) on early growth and germination of wheat seedling. Journal of Stress Physiology & Biochemistry, 9(4).

Martí, M. C., Florez-Sarasa, I., Camejo, D., Ribas-Carbó, M., Lázaro, J. J., Sevilla, F., & Jiménez, A. (2011). Response of mitochondrial thioredoxin PsTrx o 1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. Journal of Experimental Botany, 62(11), 3863-3874. DOI: https://doi.org/10.1093/jxb/err076

McKay, K., Schatz, B. G., & Endres, G. (2003). Field pea production. NDSU Extension Service.

Morais, M. C., Panuccio, M. R., Muscolo, A., & Freitas, H. (2012). Does salt stress increase the ability of the exotic legume Acacia longifolia to compete with native legumes in sand dune ecosystems?. Environmental and Experimental Botany, 82, 74-79. DOI: https://doi.org/10.1016/j.envexpbot.2012.03.012

Mujeeb-Kazi, A., Munns, R., Rasheed, A., Ogbonnaya, F. C., Ali, N., Hollington, P., ... & Saddiq, M. S. (2019). Breeding strategies for structuring salinity tolerance in wheat. In Advances in Agronomy (Vol. 155, pp. 121-187). Academic Press. DOI: https://doi.org/10.1016/bs.agron.2019.01.005

Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environment, 16(1), 15-24. DOI: https://doi.org/10.1111/j.1365-3040.1993.tb00840.x

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250. DOI: https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

Nasri, N., Kaddour, R., Rabhi, M., Plassard, C., & Lachaal, M. (2011). Effect of salinity on germination, phytase activity and phytate content in lettuce seedling. Acta physiologiae plantarum, 33(3), 935-942. DOI: https://doi.org/10.1007/s11738-010-0625-4

Noreen, Z., & Ashraf, M. (2009). Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of plant physiology, 166(16), 1764-1774. DOI: https://doi.org/10.1016/j.jplph.2009.05.005

Nuttonson, M. Y. (1961). The Physical Environment and Agriculture of Libya and Egypt with Special Reference to Their Regions Containing Areas Climatically and Latitudinally Analogous to Israel: A Study Based on Official Records, Material, and Reports of Various Agencies of the United Nations and Several National Administrations. American Institute of Crop Ecology.

Pandolfi, C., Mancuso, S., & Shabala, S. (2012). Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany, 84, 44-51. DOI: https://doi.org/10.1016/j.envexpbot.2012.04.015

Piwowarczyk, B., Tokarz, K., & Kamińska, I. (2016). Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell, Tissue and Organ Culture (PCTOC), 124(2), 227-240. DOI: https://doi.org/10.1007/s11240-015-0887-z

Rubio-Casal, A. E., Castillo, J. M., Luque, C. J., & Figueroa, M. E. (2003). Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans. Journal of Arid Environments, 53(2), 145-154. DOI: https://doi.org/10.1006/jare.2002.1042

Sadak, M. S. (2016). Mitigation of salinity adverse effects on wheat by grain priming with melatonin. International Journal of ChemTech Research, 9(2), 85-97.

Sarker, A., Hossain, M. I., & Kashem, M. A. (2014). Salinity (NaCl) tolerance of four vegetable crops during germination and early seedling growth. Int. J. Latest Res. Sci. Technol, 3(1), 91-95.

Schatz, B., & Endres, G. (1999). Field pea production.

Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. The Journal of Horticultural Science and Biotechnology, 75(6), 623-627. DOI: https://doi.org/10.1080/14620316.2000.11511297

Wang, Q., Dodd, I. C., Belimov, A. A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 43(2), 161-172. DOI: https://doi.org/10.1071/FP15200

Wolde, G., & Adamu, C. (2018). Impact of salinity on seed germination and biomass yields of field pea (Pisum sativum L.). Asian J. Sci. Tech, 9, 7565-7569.

Yan, S., Tang, Z., Su, W., & Sun, W. (2005). Proteomic analysis of salt stress‐responsive proteins in rice root. Proteomics, 5(1), 235-244. DOI: https://doi.org/10.1002/pmic.200400853

Yan, M. (2015). Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African Journal of Botany, 99, 88-92. DOI: https://doi.org/10.1016/j.sajb.2015.03.195

Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63(4), 968-989. DOI: https://doi.org/10.1128/MMBR.63.4.968-989.1999

Downloads

Published

2020-06-30

How to Cite

Ehtaiwwesh , A. F., & Emsahel, M. J. . (2020). Impact of Salinity Stress on Germination and Growth of Pea (Pisum sativum L) Plants. Al-Mukhtar Journal of Sciences, 35(2), 146–159. https://doi.org/10.54172/mjsc.v35i2.319

Issue

Section

Research Articles

Categories