Effect of Methotrexate on Recognition Memory in Adult Female Mice

Authors

  • Wafa F. Elmatoni Zoology Department, Faculty of Science , Misurata University, Libya https://orcid.org/0000-0002-8781-3324
  • Fatima H. Ahmed Zoology Department, Faculty of Science , Misurata University, Libya
  • Hajer M. Ghliwo Zoology Department, Faculty of Science , Misurata University, Libya
  • Mustafa M. Drah Biothocnology Department, Faculty of Science, Misurata University, Libya

DOI:

https://doi.org/10.54172/mjsc.v37i2.617

Keywords:

cognitive impairment, Intraperitonly, Methotrexate, Novel recognition task, Recognition memory

Abstract

Methotrexate MTX is used to treat some types of cancers, skin diseases, and rheumatic diseases. Many studies have suggested that it may lead to memory damage in mice. Accordingly, this study was conducted to investigate the effect of different doses of methotrexate on recognition memory in mice. Twenty-four adult female albino mice (weighing between 30-36 g) were divided equally into four groups and subjected to one of the following treatments: the control group (injected with normal saline), the second group treated with a dose of 20 mg/kg of MTX, the third group treated with a dose of 40 mg/kg of MTX, the fourth group treated with a dose of 80 mg/kg of MTX. All doses were given once intraperitoneally. A memory test was performed half an hour after injection, comprising object training and a new object recognition test. The results of this study showed that the MTX-injected mice had a lower rate of exploration of the novel object compared to the control group, and MTX has a dose-dependent negative effect on cognitive behavior. These findings suggest that methotrexate has a negative effect on the recognition memory of mice.

Downloads

Download data is not yet available.

References

Akman, A. U. (2021). Methotrexate Induced Hepatotoxicity and Antioxidants. Sabuncuoglu Serefeddin Health Sciences, 3(1), 22-35.

Aldosouky, E., Elfagieh, M., & Jebriel, A. (2011). Pediatric Burkitt’s lymphoma (diagnosis and treatment evaluation) in NCI, Pediatric Oncology Unit: Misurata/Libya initial experience. Journal of Clinical Oncology, 29(15_suppl), e20000-e20000. DOI: https://doi.org/10.1200/jco.2011.29.15_suppl.e20000

Aukema, E. J., Caan, M. W., Oudhuis, N., Majoie, C. B., Vos, F. M., Reneman, L., Last, B. F., Grootenhuis, M. A., & Schouten-van Meeteren, A. Y. (2009). White matter fractional anisotropy correlates with speed of processing and motor speed in young childhood cancer survivors. International Journal of Radiation Oncology* Biology* Physics, 74(3), 837-843. DOI: https://doi.org/10.1016/j.ijrobp.2008.08.060

Bedoui, Y., Guillot, X., Sélambarom, J., Guiraud, P., Giry, C., Jaffar-Bandjee, M. C., Ralandison, S., & Gasque, P. (2019). Methotrexate an old drug with new tricks. International journal of molecular sciences, 20(20), 5023. DOI: https://doi.org/10.3390/ijms20205023

Bisen-Hersh, E. B., Hineline, P. N., & Walker, E. A. (2013). Effects of early chemotherapeutic treatment on learning in adolescent mice: implications for cognitive impairment and remediation in childhood cancer survivors. Clinical Cancer Research, 19(11), 3008-3018. DOI: https://doi.org/10.1158/1078-0432.CCR-12-3764

Broadbent, N. J., Gaskin, S., Squire, L. R., & Clark, R. E. (2010). Object recognition memory and the rodent hippocampus. Learning & memory, 17(1), 5-11. DOI: https://doi.org/10.1101/lm.1650110

Cohen, S. J., & Stackman Jr, R. W. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavioural brain research, 285, 105-117. DOI: https://doi.org/10.1016/j.bbr.2014.08.002

Dukic, S., Heurtaux, T., Kaltenbach, M., Hoizey, G., Lallemand, A., & Vistelle, R. (2000). Influence of schedule of administration on methotrexate penetration in brain tumours. European Journal of Cancer, 36(12), 1578-1584. DOI: https://doi.org/10.1016/S0959-8049(00)00142-8

Elens, I., Dekeyster, E., Moons, L., & D'Hooge, R. (2019). Methotrexate affects cerebrospinal fluid folate and tau levels and induces late cognitive deficits in mice. Neuroscience, 404, 62-70. DOI: https://doi.org/10.1016/j.neuroscience.2019.01.024

Ermens, A. A., Schoester, M., Spijkers, L. J., Lindemans, J., & Abels, J. (1989). Toxicity of methotrexate in rats preexposed to nitrous oxide. Cancer research, 49(22), 6337-6341.

Etaher, N. A., Saeed, N. M., Elmejrab, M. M., Sherif, R. F., & Sherif, F. M. (2021). Prescribing Patterns of Methotrexate in Libyan Patients with Rheumatoid Arthritis. City, 29, 24. DOI: https://doi.org/10.46610/JPRD.2021.v03i01.005

Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., Wada, N., Imoto, S., Murakami, K., & Uchitomi, Y. (2007). Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109(1), 146-156. DOI: https://doi.org/10.1002/cncr.22368

John, J., Kinra, M., Mudgal, J., Viswanatha, G., & Nandakumar, K. (2021). Animal models of chemotherapy-induced cognitive decline in preclinical drug development. Psychopharmacology, 238(11), 3025-3053. DOI: https://doi.org/10.1007/s00213-021-05977-7

Kempermann, G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. Journal of neuroscience, 22(3), 635-638. DOI: https://doi.org/10.1523/JNEUROSCI.22-03-00635.2002

Li, Y., Vijayanathan, V., Gulinello, M. E., & Cole, P. D. (2010). Systemic methotrexate induces spatial memory deficits and depletes cerebrospinal fluid folate in rats. Pharmacology Biochemistry and Behavior, 94(3), 454-463. DOI: https://doi.org/10.1016/j.pbb.2009.10.008

Lyons, L., ElBeltagy, M., Umka, J., Markwick, R., Startin, C., Bennett, G., & Wigmore, P. (2011). Fluoxetine reverses the memory impairment and reduction in proliferation and survival of hippocampal cells caused by methotrexate chemotherapy. Psychopharmacology, 215(1), 105-115. DOI: https://doi.org/10.1007/s00213-010-2122-2

Madhyastha, S., Somayaji, S., Rao, M., Nalini, K., & Bairy, K. L. (2002). Hippocampal brain amines in methotrexate-induced learning and memory deficit. Canadian journal of physiology and pharmacology, 80(11), 1076-1084. DOI: https://doi.org/10.1139/y02-135

Naewla, S., Sirichoat, A., Pannangrong, W., Chaisawang, P., Wigmore, P., & Welbat, J. U. (2019). Hesperidin alleviates methotrexate-induced memory deficits via hippocampal neurogenesis in adult rats. Nutrients, 11(4), 936. DOI: https://doi.org/10.3390/nu11040936

Reger, M. L., Hovda, D. A., & Giza, C. C. (2009). Ontogeny of rat recognition memory measured by the novel object recognition task. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 51(8), 672-678. DOI: https://doi.org/10.1002/dev.20402

Seigers, R., Schagen, S. B., Beerling, W., Boogerd, W., Van Tellingen, O., Van Dam, F. S., Koolhaas, J. M., & Buwalda, B. (2008). Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behavioural brain research, 186(2), 168-175. DOI: https://doi.org/10.1016/j.bbr.2007.08.004

Seigers, R., Schagen, S. B., Coppens, C. M., van der Most, P. J., van Dam, F. S., Koolhaas, J. M., & Buwalda, B. (2009). Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behavioural brain research, 201(2), 279-284. DOI: https://doi.org/10.1016/j.bbr.2009.02.025

Sritawan, N., Prajit, R., Chaisawang, P., Sirichoat, A., Pannangrong, W., Wigmore, P., & Welbat, J. U. (2020). Metformin alleviates memory and hippocampal neurogenesis decline induced by methotrexate chemotherapy in a rat model. Biomedicine & Pharmacotherapy, 131, 110651. DOI: https://doi.org/10.1016/j.biopha.2020.110651

Sritawan, N., Suwannakot, K., Naewla, S., Chaisawang, P., Aranarochana, A., Sirichoat, A., Pannangrong, W., Wigmore, P., & Welbat, J. U. (2021). Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomedicine & Pharmacotherapy, 144, 112280. DOI: https://doi.org/10.1016/j.biopha.2021.112280

Vijayanathan, V., Gulinello, M., Ali, N., & Cole, P. D. (2011). Persistent cognitive deficits, induced by intrathecal methotrexate, are associated with elevated CSF concentrations of excitotoxic glutamate analogs and can be reversed by an NMDA antagonist. Behavioural brain research, 225(2), 491-497. DOI: https://doi.org/10.1016/j.bbr.2011.08.006

Wilks, M. J., Tie, M. L., & Pozza, C. H. (2002). CT and MRI appearances of methotrexate leucoencephalopathy. Australasian radiology, 46(1), 80-83. DOI: https://doi.org/10.1046/j.1440-1673.2001.01000.x

Published

2022-06-30

How to Cite

Elmatoni, W. F., Ahmed, F. H., Ghliwo, H. M., & Drah, M. M. (2022). Effect of Methotrexate on Recognition Memory in Adult Female Mice. Al-Mukhtar Journal of Sciences, 37(2), 175–184. https://doi.org/10.54172/mjsc.v37i2.617

Issue

Section

Research Articles

Categories