Evaluation of Groundwater Quality in the South of Tripoliand its suitability for Irrigation Using Irrigation Water Quality Index (IWQI)

Authors

  • Ahmed Ibrahim Ekhmaj Soil and water Department, Faculty of Agriculture, University of Tripoli.
  • Abdul Rahman Ahmed Alriyani Advanced Laboratory of Chemical Analysis, Authority of Natural Science Research and Technology, Tripoli, Libya.
  • Mohamed Melad Dulayoum Olive tree research center, Authority of Natural Science Research and Technology, Tripoli, Libya

DOI:

https://doi.org/10.54172/mjsc.v36i1.12

Keywords:

Groundwater, Meireles index, IWQI, IDW, Southern Tripoli

Abstract

Groundwater represents one of the main constraints to develop successful sustainable agricultural activity in Libya. Good management and proper planning of this resource requires knowledge of water quality to reduce the problems which may face the users of that resource. This study aims to identify the chemical composition of groundwater in the south of Tripoli area and to assess the quality of groundwater for irrigation purposes. In order to achieve the objectives of this study, 31 samples of groundwater were collected from wells scattered around southern Tripoli during July of 2016. Many chemicals analyze were conducted on these samples to estimate the electrical conductivity(EC), pH and the concentration of some dissolved ions which included sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl-), bicarbonate (HCO3-) and sulfate (SO42-). The adjusted percentage of absorbed sodium (SARo) was also determined. The five-parameters irrigation water quality index was used. These parameters included EC, Na+, Cl-, HCO3-, and SARo. The inverse distance weighted to the power 2 was used to obtain the maps of the spatial distribution of chemical properties and irrigation water quality index. The results showed that the values of the electrical conductivity were high in the middle of the study area and decreased at its east and west, and the spatial distribution pattern was very similar to the spatial distribution of sodium and chloride ions. The results also indicated that the average relative abundance of dissolved anions as expressed in units of (meq/l) were 65.8, 20.4, and 13.8% for Cl-, SO42-, and HCO3-, respectively. The average relative abundance of dissolved cations was 49.3, 28.1, 21.7 and 0.9% for Na+, Mg2+, Ca2+, and K+, respectively. The irrigation water quality index values ranged between 41.2 and 76.6. The spatial distribution map of the irrigation water quality index also showed that 62% of the area of the study area was classified as having moderate restrictions and limitations for use for irrigation purposes, and that 37.5% were classified as having high restrictions and limitations.

Downloads

Download data is not yet available.

References

الصادي بشير يوسف، رأف الله عطية محمد، بن زقطة، مصطفى محمد والجائر محمد منصور. (2020). دراسة جودة مياه الري بالمشاريع الزراعية بمنطقة مصراتة. مجلة جامعة مصراتة للعلوم الزراعية. 1(2): 465-478.

الميلودي، عبير مصطفى (2018). تحديد مؤشرات الجفاف المناخي المعتمدة على الهطول لمنطقة سهل الجفارة. رسالة ماجستير غير منشورة. كلية الزراعة. جامعة طرابلس، ليبيا، طرابلس.

عبد العزيز، عبد الرزاق مصباح الصادق، أحمد إبراهيم خماج وصلاح عبد المولى أبوخذير )2009. (رصد نوعية المياه الجوفية بتاجوراء- ليبيا. مجلة الإسكندرية للتبادل العلمي.30 (4)، 260- 280.

Abbasnia A, Alimohammadi M, Mahvi A. H, Nabizadeh.R, Yousef. M, Mohammadi. H Passalari. Hand Mirzabi. H. M. (2018). Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief 16:182–92. DOI: https://doi.org/10.1016/j.dib.2017.11.003

Abdulhady, Y., Zaghlol, E. and Gedamy, Y, (2018). Assessment of the groundwater quality of the QuaternaryAquifer in reclaimed areas at the Northwestern El-Minya Governorate- Egypt, using the water quality index. International Journal of Recent Scientific Research 9(1), 23033-23047.

Abdullah, T.O., Ali, S. S. and Al Ansari, N. A. (2016). Groundwater assessment of Halabja Saidsadiq Basin, Kurdistan region, NE of Iraq using vulnerability mapping. Arab J Geosci 9(3), 223. DOI: https://doi.org/10.1007/s12517-015-2264-y

Alfarrah, N., Martens K. and Walraevens, K (2011). Hydrochemistry of the Upper Miocene-Pliocene-Quaternary aquifer complex of Jifarah Plain, NW-Libya. GeologicaBelgica, 14(3–4), 159–174.

Albu, M., Banks, D. and Nash, H. (1997). Mineral and Thermal Groundwater Resources. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-011-5846-6

APHA. (1992). Standard Methods for Examination of Water and Wastewater. 18th Edition. American Public Health Association. Washington DC.

Appelo C. A. J. and D. Postma (1996). Geochemistry, Ground-water and Pollution. A.A. Balkema Publishers, Rotterdam.

Appelo, C.A.J.(1994). Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resource. Res. 30, 2793–2805. DOI: https://doi.org/10.1029/94WR01048

Aris, Z. A. M. H. Abdllah, Ahmed.A. and. Woong.K. K. (2007). Controlling factors of groundwater hydrochemistry in a small island’s aquifer," Int. J. Env. Sci and Tech. 4 (4), 441- 450. DOI: https://doi.org/10.1007/BF03325979

Arnon, I. (1972). Crop production in dry regions London, leonardHill. United Kingdom.

Ayers. R. S. and Westcot. D. W. 1985. Irrigation water quality. FAO, Rome.pp. 174.

Ayers, R. S and Westcot, D.W (1999). Water quality for agriculture.2nd Campina Grand: UFPB. Studies FAO Irrigation and Drainage paper No. 29. FAO: Rome.

Azpurua. M and Dos Ramos. K (2010). A comparison of Spatial Interpolation Methods for Estimation of Average Electromagnatic Field Magnitude. Progress InElectromagnetic Research (14), 135-145. DOI: https://doi.org/10.2528/PIERM10083103

Babiker, I.S. M.ohamed, M. A A. and Hiyama, T. (2007). Assessing groundwater quality using GIS.Water Resource Manag. (21): 699-715. DOI: https://doi.org/10.1007/s11269-006-9059-6

Babak. O. and Deutsch. C. V (2008). Statistical Approach to inverse distance interpolation. Stoch. Res. Risk. Assess. 23(5), 543-553 DOI: https://doi.org/10.1007/s00477-008-0226-6

Bernardo, S. (1995). Manual of Irrigation. (4 th ed), Vicosa: Federal University of Vicosa, Brazil.

Brhane, G.K. (2016). Irrigation Water Quality Index and GIS Approach based Groundwater Quality Assessment and Evaluation for Irrigation Purpose in Ganta Afshum Selected Kebeles, Northern Ethiopia. International Journal of Emerging Trends in Science and Technology, 3(09), 4624-4636. DOI: https://doi.org/10.18535/ijetst/v3i09.10

Ekhmaj, I. A, Ezlit, Y., and Elaalem, M (2014). The Situation of Seawater Intrusion in Tripoli, Libya. International Conference on Biological, Chemical and Environmental Sciences (BCES-2014) June 14-15, 2014 Penang -Malaysia.

El Moujabber M, Bou Samra B, Darwish T, Atallah T (2006). Comparison of different indicators for groundwater contamination by seawater intrusion on the Lebanese coast. Water Resource Manage (20), 161–180. DOI: https://doi.org/10.1007/s11269-006-7376-4

El-Trriki, N. A. (2006). Groundwater Salinization in the Coastal area of Jifara Plain, NW-Libya. MSc. Belgium. University of Ghent.

ESRI. (2012). ArcGIS Desktop. Environmental Systems Research Institute. Redlands, California. USA.

Flogel, H. (1979). Seawater Intrusion Study. SARALD/FAO project. Unpublished Report. Tripoli, 56p.5 tables, 26 fig. and 3 maps.(AW-295).

Heba. S.A, Hassan. A. A. and Faid. A. M, (2016). Assessment of Groundwater Quality for Different Aquifers in Halaib and Shalatien at South Eastern Desert of Egypt. Journal of Soil Sciences and Agricultural Engineering, Mansoura Univ. 11(6), 203-214.

Holanda, J. S. and Amorim, J. A. (1997). Management and control salinity and irrigated agriculture water, Congresso Brasileiro de Engenharia setting, 26, Campina Grande: 137-169.

Lesch, S. M., and D. L. Suarez. (2009). A short note on calculating the adjusted SAR index. Transactions of the ASABE 52 (2), 493–496. DOI: https://doi.org/10.13031/2013.26842

Meireles, A. C. M., Andrade, E. M., Chaves, L. C. G., Frischkorn, H., and Crisostomo, L. A. (2010). A new proposal of the classification of irrigation water. Revista Ciência Agronômica,(41), 349–357. DOI: https://doi.org/10.1590/S1806-66902010000300005

Mercado, A., (1985). The use of hydro geochemical patterns in carbonate sand and sandstone aquifers to identify intrusion and flushing of old saline water. Ground Water(23), 635–644. DOI: https://doi.org/10.1111/j.1745-6584.1985.tb01512.x

Misaghi, F. (2017) .Introducing a water quality index-dor assessing water for irrigation purposes: a case study of the ghezelozan River. Sci Total Envi-rov (589), 107-116. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.226

Mohammed, M.N. (2011). Quality assessment of Tigris river by using water quality index for irrigation purpose. European Journal of Scientific Research 57 (1): 15-28.

Panteleit, B., Kessels, W., Kantor, W., Schulz, H. (2001). Geochemical Characteristics of Salinization- Zones in the Coastal Aquifer Test Field (Cat-Field) in North-Germany. In Proceeding of 5th International Conference on Saltwater Intrusion and Coastal Aquifers- Monitoring, Modeling and Management, Essaouira, Morroco, 23-25.

Piper, A.M. (1944) A graphic procedure in the Geochemical interpretation of water analysis. Transactions. American Geophysical Union, 25, 914 -928. DOI: https://doi.org/10.1029/TR025i006p00914

Pulido-Leboeuf,P.(2004) Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Applied Geochemistry (19), 1517–1527. DOI: https://doi.org/10.1016/j.apgeochem.2004.02.004

Ramesh, and Srinithi, K. (2014). Hydrochemical Characteristics of Groundwater in Mayiladuthurai Block of Nagapattinam District, Tamil Nadu. International Journal of ChemTech Research. 6 (14), 5698-5708.

Richards LA (1954).Diagnosis and improvement of saline and alkaline soils. United States Salinity Laboratory, US Department of Agriculture, Agri Hand book 60 Washington. USA.

Simsek, C. and Gunduz, O. (2007). IWQ index: A GIS integrated technique to assess irrigation water quality. EnvironmentalMonitoring and Assessment (128) 277–300. DOI: https://doi.org/10.1007/s10661-006-9312-8

Suarez, D. L. (1981). Relation between pHc and sodium adsorption ratio (SAR) and an alternative method of estimating SAR of soil and drainage waters. SSSA J. 45(3): 469‐475. DOI: https://doi.org/10.2136/sssaj1981.03615995004500030005x

Sundaray, S. K. (2010). Application of Multivariate Statistical techniques in hydrological studies- A case study of Brahmani- Koel River (India). Environ. Monit. Assess 164, 297-310 DOI: https://doi.org/10.1007/s10661-009-0893-x

Todd, D.K. (1980) Groundwater Hydrology; Wiley: Hoboken, NJ, USA.

Walraevens K and Van Camp M. (2005) Advances in understanding natural groundwater quality controls in coastal aquifers. In: 18 Salt Water Intrusion Meeting (SWIM). Cartagena 2004, Spain, 451–460.

Published

2021-03-31

How to Cite

Ekhmaj, A. I. ., Alriyani, A. R. A. ., & Dulayoum, M. M. . (2021). Evaluation of Groundwater Quality in the South of Tripoliand its suitability for Irrigation Using Irrigation Water Quality Index (IWQI). Al-Mukhtar Journal of Sciences, 36(1), 80–97. https://doi.org/10.54172/mjsc.v36i1.12

Issue

Section

Research Articles

Categories