Post-Fire Vegetation Recovery in Elwasita Area of Al-Jabal Al-Akhdar-Libya - Based on Remote Sensing Information

Authors

  • Moussa Masoud Department of Forestry and Rangeland, Faculty of Natural Resources and Environmental Sciences, Omar Al-Mukhtar University, Al Bayada, Libya.

DOI:

https://doi.org/10.54172/mjsc.v36i4.588

Keywords:

GIS, NDVI, NBR, Satellite images

Abstract

Satellite-based remote sensing technologies and Geographical Information Systems (GIS) present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Elwasita wildfire, which occurred during April and May in 2013 in Libya, was selected as a study site. This study aims to monitor vegetation recovery and investigate the relationship between vegetation recovery and topographic factors by using multi-temporal spectral indices together with topographical factors. Landsat 8 (OLI and TIRS) images from different data were obtained which were for four years; April 2013, June 2014, July 2015, and July 2016, to assess the related fire severity using the widely-used Normalized Burn Ratio (NBR).  Normalized difference Vegetation Index (NDVI) was used to determine vegetation regeneration dynamics for four consecutive years. Also, the state of damage, vegetation recovery and, damage dimensions about the burned area were capable of being effectively detected using the result of supervised classification of Landsat satellite images. In addition, aspect, slope, and altitude images derived from Digital Elevation Model (DEM) were used to determine the fire severity of the study area. The results have found that it could be possible to figure out the degree of vegetation recovery by calculating the NDVI and NBR using Landsat 8 OLI and TIRS images. Analysis showed that it mainly oriented towards the northwest (47%), north (29%), and northeast (12%). The statistical analysis showed that fire was concentrated on the incline by 76%, and the most affected areas are those between 200 m-450 m above sea level, with a percentage of 80%. It is expected that the information can be acquired by various satellite data and digital forests. This study serves as a window to an understanding of the process of fire severity and vegetation recovery that is vital in wildfire management systems.

Downloads

Download data is not yet available.

References

Alacantara, E. (2010). A lonely rooster cannot bring on a new dawn: the role of a FL teachers’ association in the professional development of its associates’. Unpublished MA dissertation, Universidade de Brasília, Instituto de Letras, Brazil.

Arnan, X., Rodrigo, A., & Retana, J. (2007). Post‐fire regeneration of Mediterranean plant communities at a regional scale is dependent on vegetation type and dryness. Journal of Vegetation Science, 18(1), 111-122. DOI: https://doi.org/10.1111/j.1654-1103.2007.tb02521.x

Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New phytologist, 165(2), 525-538. DOI: https://doi.org/10.1111/j.1469-8137.2004.01252.x

Carrion, J. S., Sánchez-Gomez, P., Mota, J. F., Yll, R., & Chaín, C. (2003). Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. The Holocene, 13(6), 839-849. DOI: https://doi.org/10.1191/0959683603hl662rp

Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., Vilar, L., Martínez, J., Martín, S., & Ibarra, P. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46-58. DOI: https://doi.org/10.1016/j.ecolmodel.2008.11.017

Cocke, A. E., Fulé, P. Z., & Crouse, J. E. (2005). Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14(2), 189-198. DOI: https://doi.org/10.1071/WF04010

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1), 37-46. DOI: https://doi.org/10.1177/001316446002000104

Congalton, R. G., & Mead, R. A. (1983). A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing, 49(1), 69-74.

De Santis, A., & Chuvieco, E. (2007). Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sensing of Environment, 108(4), 422-435. DOI: https://doi.org/10.1016/j.rse.2006.11.022

Díaz-Delgado, R., Salvador, R., & Pons, X. (1998). Monitoring of plant community regeneration after fire by remote sensing. Fire management and landscape ecology, 315-324.

Epting, J., & Verbyla, D. (2005). Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska. Canadian Journal of Forest Research, 35(6), 1367-1377. DOI: https://doi.org/10.1139/x05-060

Eva, H., & Lambin, E. (1998). Burnt area mapping in Central Africa using ATSR data. International Journal of Remote Sensing, 19(18), 3473-3497. DOI: https://doi.org/10.1080/014311698213768

Fox, D., Maselli, F., & Carrega, P. (2008). Using SPOT images and field sampling to map burn severity and vegetation factors affecting post forest fire erosion risk. Catena, 75(3), 326-335. DOI: https://doi.org/10.1016/j.catena.2008.08.001

Goetz, S. J., Fiske, G. J., & Bunn, A. G. (2006). Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sensing of Environment, 101(3), 352-365. DOI: https://doi.org/10.1016/j.rse.2006.01.011

Gouveia, C., DaCamara, C., & Trigo, R. (2010). Post-fire vegetation recovery in Portugal based on spot/vegetation data. Natural Hazards and Earth System Sciences, 10(4), 673-684. DOI: https://doi.org/10.5194/nhess-10-673-2010

Gouveia, C., Trigo, R., & DaCamara, C. (2009). Drought and vegetation stress monitoring in Portugal using satellite data. Natural Hazards and Earth System Sciences, 9(1), 185-195. DOI: https://doi.org/10.5194/nhess-9-185-2009

Hope, A., Tague, C., & Clark, R. (2007). Characterizing post‐fire vegetation recovery of California chaparral using TM/ETM+ time‐series data. International Journal of Remote Sensing, 28(6), 1339-1354. DOI: https://doi.org/10.1080/01431160600908924

Jakubauskas, M. E., Lulla, K. P., & Mausel, P. W. (1990). Assessment of vegetation change in a fire-altered forest landscape. PE&RS, Photogrammetric Engineering & Remote Sensing, 56(3), 371-377.

Jensen, J. R. (1996). Introductory image processing: A remote sensing perspective. Prentic Hall.

Kazanis, D., & Arianoutsou, M. (2004). Factors determining low Mediterranean ecosystems resilience to fire: the case of Pinus halepensis forests. Proceedings of 10th MEDECOS conference,

Key, C., & Benson, N. (2005). Landscape assessment: ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. FIREMON: Fire effects monitoring and inventory system, 2004.

Kokaly, R. F., Rockwell, B. W., Haire, S. L., & King, T. V. (2007). Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of Environment, 106(3), 305-325. DOI: https://doi.org/10.1016/j.rse.2006.08.006

Landmann, T. (2003). Characterizing sub-pixel Landsat ETM+ fire severity on experimental fires in the Kruger National Park, South Africa. South African Journal of Science, 99(7), 357-360.

Maheras, G. (2002). Forests fires in Greece. The analysis of the phenomenon affecting both natural and human environment. The role of sustainable development in controlling fire effects M. Sc. Thesis.

Manandhar, R., Odeh, I. O., & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing, 1(3), 330-344. DOI: https://doi.org/10.3390/rs1030330

Masoud, Moussa. (2015) Monitoring land use /land cover using multi-temporal Landsat images in Al-Jabal Al-Akhdar area in Libya between 1984 and 2003. Al-Mukhtar Journal of Sciences Vol (31), No. (01), Year (2016) 12-22.

Masoud, Moussa. & Alajeel, Khamees. (2016). Forest fires study using satellite imagery and GIS: a case study of Al-Jabal Al-Akhdar area in Libya. Proceedings of the fourth scientific conference of environment and sustainable development in the arid and semiarid regions (ICESD), from 20-22 November. Ajdabiya. Libya.

Miller, J. D., Safford, H., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems, 12(1), 16-32. DOI: https://doi.org/10.1007/s10021-008-9201-9

Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109(1), 66-80. DOI: https://doi.org/10.1016/j.rse.2006.12.006

Minchella, A., Del Frate, F., Capogna, F., Anselmi, S., & Manes, F. (2009). Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas. Remote Sensing of Environment, 113(3), 588-597. DOI: https://doi.org/10.1016/j.rse.2008.11.004

Mitri, G. H., & Gitas, I. Z. (2010). Mapping postfire vegetation recovery using EO-1 Hyperion imagery. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1613-1618. DOI: https://doi.org/10.1109/TGRS.2009.2031557

Pausas, J., & Verdú, M. (2005). Plant persistence traits in fire‐prone ecosystems of the Mediterranean basin: a phylogenetic approach. Oikos, 109(1), 196-202. DOI: https://doi.org/10.1111/j.0030-1299.2005.13596.x

Pausas, J. G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic change, 63(3), 337-350. DOI: https://doi.org/10.1023/B:CLIM.0000018508.94901.9c

Pereira, J. M. (1999). A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 217-226. DOI: https://doi.org/10.1109/36.739156

Petropoulos, G. P., Griffiths, H. M., & Kalivas, D. P. (2014). Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS. Applied Geography, 50, 120-131. DOI: https://doi.org/10.1016/j.apgeog.2014.02.006

Röder, A., Hill, J., Duguy, B., Alloza, J. A., & Vallejo, R. (2008). Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sensing of Environment, 112(1), 259-273. DOI: https://doi.org/10.1016/j.rse.2007.05.001

Rodrigo, A., Retana, J., & Picó, F. X. (2004). Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology, 85(3), 716-729. DOI: https://doi.org/10.1890/02-0492

Roy, D. P., & Landmann, T. (2005). Characterizing the surface heterogeneity of fire effects using multi‐temporal reflective wavelength data. International Journal of Remote Sensing, 26(19), 4197-4218. DOI: https://doi.org/10.1080/01431160500112783

Smith, A. M., & Hudak, A. T. (2005). Estimating combustion of large downed woody debris from residual white ash. International Journal of Wildland Fire, 14(3), 245-248. DOI: https://doi.org/10.1071/WF05011

Smith, A. M., Wooster, M. J., Drake, N. A., Dipotso, F. M., Falkowski, M. J., & Hudak, A. T. (2005). Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African Savannahs. Remote Sensing of Environment, 97(1), 92-115. DOI: https://doi.org/10.1016/j.rse.2005.04.014

Stroppiana, D., Pinnock, S., Pereira, J. M., & Grégoire, J.-M. (2002). Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia. Remote Sensing of Environment, 82(1), 21-37. DOI: https://doi.org/10.1016/S0034-4257(02)00021-4

Tishkov, A. A. (2004). Forest fires and dynamics of forest cover. Natural Disasters-Volume II, 130.

Trigg, S., & Flasse, S. (2000) Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry. International Journal of Remote Sensing, 21(16), 3161-3168. DOI: https://doi.org/10.1080/01431160050145045

Veraverbeke, S., Verstraeten, W. W., Lhermitte, S., & Goossens, R. (2010). Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. International Journal of Wildland Fire, 19(5), 558-569. DOI: https://doi.org/10.1071/WF09069

White, J. D., Ryan, K. C., Key, C. C., & Running, S. W. (1996) Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire, 6(3), 125-136. DOI: https://doi.org/10.1071/WF9960125

Downloads

Published

2021-12-31

How to Cite

Masoud, M. . (2021). Post-Fire Vegetation Recovery in Elwasita Area of Al-Jabal Al-Akhdar-Libya - Based on Remote Sensing Information. Al-Mukhtar Journal of Sciences, 36(4), 288–299. https://doi.org/10.54172/mjsc.v36i4.588

Issue

Section

Research Articles

Categories