The ability of two Leguminous Plants to increase Zinc metal tolerance by Arbuscular mycorrhizal fungi colonization

Authors

  • A. S. Banni Botany Department, Faculty of Science, Benghazi University.
  • Salah Hajomer Botany Department, Faculty of Science, Benghazi University.
  • Y. A. Tayeb Botany Department, Faculty of Science, Benghazi University.

DOI:

https://doi.org/10.54172/mjsc.v30i1.115

Keywords:

Arbuscular Mycorrhizal fungi, Zinc tolerance, Leguminous plants, MD- mycorrhizal dependency

Abstract

Pot experiment was carried out in green house at Agriculture Faculty (Saba bacha), Alexandria University. The experiment was done to investigate the role of  arbuscular mycorrhizae (AMF) to increase uptake of zinc (Zn) by some crops. Two species of leguminous soybean (Glycine max. L) and lentil (Lens culinaris. L) were grown in sandy  soil . Zinc was applied as ZnSO4.7HO2, in four concentrations (0, 30, 50 and 70 mg/ kg soil). The plants were collected after 60 day from sowing. The results indicating that AMF colonization increased the tested plant resistance to Zinc metal. It also significantly stimulated the form ation of root nodules, either increased the P uptake in all treatments, which might be one of the tolerance mechanisms conferred by AMF. All treatments were compared with the control, Mycorrhizal plants inoculated by G. intraradices shown more accumulation of zinc in roots and large reductions in shoots of the two legumes, indicating that the decreased Zinc metal uptake and growth dilution were induced by AMF treatment, thereby reducing the Zinc metal toxicity to the plants.

Downloads

Download data is not yet available.

References

Andrade, S. A., L., C. A. Abreu, M. F. de Abreu, and A.P. D. Silveira. (2004). Influence of lead additions on arbuscular mycorrhiza and rhizobium symbioses under soybean plants. Appl. Soil Eco., 26: 123–131. DOI: https://doi.org/10.1016/j.apsoil.2003.11.002

Barea, J. M., M. J. Pozo, R. Azco´n and C. Azcón-Aguilar. (2005). Microbial co- peration in the rhizosphere. J. Exp. Bot., 56: 1778. DOI: https://doi.org/10.1093/jxb/eri197

Chen, W., F. Bruhlmann, R. D. Richias and A. Mulchandani. (1999). Engineering of improved microbes and enzymes for bioremediation. Current Opinion Biotechn., 10: 137–141. DOI: https://doi.org/10.1016/S0958-1669(99)80023-8

Christie, P., X. L. Li and B. D. Chen. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil., 261: 209–217. DOI: https://doi.org/10.1023/B:PLSO.0000035542.79345.1b

Dìaz, G., C. Azcŏn-Aguilar and M. Honrubia. (1996). Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil., 180: 241–249. DOI: https://doi.org/10.1007/BF00015307

Giovannetti, M., and B. Mosse. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol., 84: 489–500. DOI: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Harper, F .A., S. Smith and M. Macnair. (1997). Can an increased copper requirement in copper-tolerant Mimulus guttatus explain the cost of tolerance? I. Vegetative growth. New Phytol., 136:455–467. DOI: https://doi.org/10.1046/j.1469-8137.1997.00761.x

Ibekwe, A. M., J. S. Angle, R. L. Chaney and P. Van-Berkum. (1995). Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes. J. Enviro Quality., 24:1199–1204. DOI: https://doi.org/10.2134/jeq1995.00472425002400060021x

Jackson, M. L. (1967). Soil Chemical Analysis. Printica Hall, Inc. Englewood cliffs, New Jerrsey. P. 134-182.

Karandashov, V. and M. Bucher. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science.,10: 22–29. DOI: https://doi.org/10.1016/j.tplants.2004.12.003

Kotrba, P., L. Doleckova, V. Lorenzo and T. Rumi. (1999). Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl. and Envir. Microbio., 65: 1092–1098. DOI: https://doi.org/10.1128/AEM.65.3.1092-1098.1999

Lowther, J. R. (1980). Use of a single sulfuric acid–hydrogen peroxide digest for the analysis of Pinus radiata needles. Common. Soil Sci. Plant Anal., 11:175–188. DOI: https://doi.org/10.1080/00103628009367026

Marques, A. P. G. C., R.S. Oliveira, A. O. S. S. Rangel and P. M. L. Castro. (2006). Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere., 65: 1256-1263. DOI: https://doi.org/10.1016/j.chemosphere.2006.03.022

Ma, Y., N. M. Dickinson and M. H. Wong. (2006). Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Bio. and Biochem., 38:1403–1412. DOI: https://doi.org/10.1016/j.soilbio.2005.10.016

Phillips, J. M. and D. S. Hayman. (1970). Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55: 158–160. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3

Pichtel, J. and C. A. Salt. (1998). Vegetative growth and trace metal accumulation on metalliferous wastes. J. Envir. Quality., 27: 618–642. DOI: https://doi.org/10.2134/jeq1998.00472425002700030020x

Plenchette, C., J. A. Fortin and V. Furlan. (1983). Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant and Soil., 70:199 –209. DOI: https://doi.org/10.1007/BF02374780

Smith, S. E. and D. J. Read. (1997). Mycorrhizal Symbiosis, Academic Press, San Diego, USA.

Tiemann, K. J., J. L. Gardea-Torresdey, G. Gamez, K. Dokken, S.Sias, M. W. Renner and L. R Furenlid. (1999). Use of X-ray absorption apectroscopy and esterification to investigate Cr(III) and Ni(II) ligands in Alfalfa biomass. Envir. Sci. & Techn., 33: 150–154. DOI: https://doi.org/10.1021/es9804722

Toro, M., R. Azcón and J. M. Barea. (1998). The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhiza fungi, phosphate-solubilizing Rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol., 138: 265–273. DOI: https://doi.org/10.1046/j.1469-8137.1998.00108.x

Tullio, M., F. Pierandrei, A. Salerno and E. Rea. (2003). Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol. Fertil. Soils., 37: 211–214. DOI: https://doi.org/10.1007/s00374-003-0580-y

Vogel-Mikun, K., D. Drobne and M. Regvar. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Envir. Pollution., 133: 233–242. DOI: https://doi.org/10.1016/j.envpol.2004.06.021

Wang, F .Y ., X.G. Lin, and R. Yin. (2005). Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil., 269: 225–232. DOI: https://doi.org/10.1007/s11104-004-0517-8

Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere., 50: 775–780. DOI: https://doi.org/10.1016/S0045-6535(02)00232-1

Downloads

Published

2015-06-30

How to Cite

Banni, A. S. ., Hajomer, S. ., & Tayeb, Y. A. . (2015). The ability of two Leguminous Plants to increase Zinc metal tolerance by Arbuscular mycorrhizal fungi colonization. Al-Mukhtar Journal of Sciences, 30(1), 18–32. https://doi.org/10.54172/mjsc.v30i1.115

Issue

Section

Research Articles

Categories