Effects of Azospirillum lipoferum strain isolated from Al Jabal Al Akhdar region and wheat straw on some physiological properties and nitrogen content of Triticum aestivum cultivars

Authors

  • Idress H. Attitalla Omar Al-Mukhtar University Faculty of science

DOI:

https://doi.org/10.54172/mjsc.v26i1.164

Keywords:

Al Jabal Al Akhdar, Triticum aestivum, Azospirillum lipoferum, wheat straw

Abstract

Azospirillum was abundant in high population levels and recorded 1.1 × 103 – 13.2 × 104 CFU/g in 23 soil samples collected from the rhizosphere of 24 plants grown in different sites distributed in El-Jabal Elakhdr eco-region. According to cell-morphological, cultural and biochemical characteristics, fifteen A. lipoferum isolates were identified. The effect of A. lipoferum (isolate R23) inoculation and / or wheat straw (0.5 and 10 T/h) amendment on the grouth and N2 fixation of two wheat cultivars (Giza 167 and local cultivar) was determined in pot experiments using the difference method (DM). Azospirillum inoculation resulted in accumulation of fixed nitrogen, and N% from atmosphere being 36.7 and 12.9% for wheat Giza 167 and the local wheat cultivar, respectively. Straw amendment reduced %N from atmosphere to 9.7 and 11.2% at 5 and 10 T/h, respectively for wheat local cultivar and recorded 23.9 and 20.1% for wheat cultivar. Giza 167. Rational nitrogen fertilization (180 kg N/h) recorded the lowest %N from air and recorded 7.1 and 11.2% for wheat local and Giza 167 cultivars, respectively. The highest levels of increased growth parameters were obtained by N-fertilization in both inoculated and uninoculated plants for both cultivars. Azospirillum inoculation induced shoot Mg and P content, but not Ca in both cultivars. Organic matter addition had no significant effects in both cultivars used in the present study and such outcome needs further assessment.

Downloads

Download data is not yet available.

References

الكسندر، مارتن (1982). مقدمة إلى ميكروبيولوجيا التربة، جامعة كورنيل؛ مءسسة جون وايلي و

أولاده، الطبعة الثانية.

Balandrea, J. (1986): Ecological factors and adaptive processes in N2-fixing bacterial populations of the plant environment. Plant of soil. 90: 73-92. DOI: https://doi.org/10.1007/978-94-009-4378-0_6

Bashan, Y. and Holguin, G. (1997): Azospinllum Plant. Relationships. Can. J. Microbiol. 43: 103-121. DOI: https://doi.org/10.1139/m97-015

Bashan, Y.; Holgiun, G. and de-Bashan, L. (2004): Azospirillum-plant velationships: physoloyical, molecular, agricultural, and environmental advances. Can. J. Microbiol. 50: 521-577. DOI: https://doi.org/10.1139/w04-035

Becking, J.H. (1963): Fixation of molecular nitrogen by an aerobic vibrio spirillum J. Microbiol. Sevol. 29: 326. DOI: https://doi.org/10.1007/BF02046082

Beijerinck, M.W. (1925): Ube rein Spirillium, Welches freien stickstoff binden Kann? Centrabl. Bakt. II Abt. 63: 353-357.

Black, C. A. (1965) Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, American Society of Agronomy, Inc., Madison, Wisconsin, USA.

Brady, N.C and Weil R. R., (1999) The Nature and Properties of Soils (12 edition). Prentice- Hall, Inc.

Day J. and Döbereiner, J. (1976). Physiological aspects of N2 fixation by Spirrilum from Digitaria roots. Soil Biology and Biochemistry, 8: 45-50. DOI: https://doi.org/10.1016/0038-0717(76)90020-1

De – Polli, H. and Roth, I. (1981): Scanning electron microscopy of large cells of Azospirillum Spp. Annual Meeting of the American Society for Microbiology, Texas, P. 85.

Elkomy, H. (1992): Studies on the genus Azospirillum from the rhizosphere of maize and rice plants. Ph. D. Thesis Inst of pp. 169. Microbiology, Academic Science, Russia.

Elkomy, H.; Hamdia, M. and Abdel Baki, G. (2003): Nitrate reductase in wheat plants grown under Water stress and inoculated with Azospirillum spp. Biol. Plant. 46: 281-287. DOI: https://doi.org/10.1023/A:1022819114860

Elkomy, H.; Hamdia, M.; Hetta, A. and Barkat, N. (2004): Possible roles of nitrogen fixation and mineral uptake induced by rhizobacterial inoculation on salt tolerance of maize. Polish J. Microbiol. 53: 53-60.

Fallik, E.; Okon, Y. and Fischer, M. (1988): Growth response of maize roots to Azospirillum inoculation. Soil Biol. Biochem. 20: 45-49. DOI: https://doi.org/10.1016/0038-0717(88)90125-3

Hamdia, M. and Elkomy, H. (1997): Effect of Salinity, gibberellic acid and Azospirillum inoculation on growth and nitrogen uptake of zea mays. Boil. Plant. 40: 109-120. DOI: https://doi.org/10.1023/A:1000904819841

Hartman, A and Baldani, J. (2006): The Genus Azospirillum Prokaryotes, 5: 115-140. DOI: https://doi.org/10.1007/0-387-30745-1_6

Hegazi, N. (1988): Modification of Soil environment through straw application versus Azopirillum spp. Inoculation. In Azospirillum. IV. DOI: https://doi.org/10.1007/978-3-642-73072-6_27

Genetics, physiology and Ecology. W. Klingmuller (ed), Springer-verlag, Berlin.

Kassen, G.; pedrosa, F.; Souza, E. And Rigo, L. (1997): Effect of nitrogen compounds on nitrogenous activity in Herbaspirillum seropedicoe.

Can J. Microbial 43: 887-891

Krieg, N. and Dobereiner, J. (1984): Genus Azospirillum In. Holt, J. and Krieg, N. (eds), Bergy's Manual of systematic Bacteriology 9th ed., Williams and wikins, Baltimore, pp. 94-104.

Kucey R. (1988). Alteration of size of wheat root systems and nitrogen fixation by associative bacteria. Canadian Journal of Microbiology, 34: 735-739. DOI: https://doi.org/10.1139/m88-125

Norman, J. and Campbell, G. (1994): Canopy In. Pearey, R.W. Ehleringer. J. Mooney. H. A. Rundel. P.W. (eds) Plant Physiological Ecology. Pp. 301-326. Chapman & Hall. London.

Olsen S. and Sommers L. (1982). In: Methods of soil analysis, Part (2) A. L. Page, R. H. Miller, D. R. Keeny (eds), American Society of Agronomy, Madison, Wisconsin.

Reinnie, R. and Reinnie, D. (1983): Techniques for quantifying N2 fixation in association with non-legumes under field and green-hose conditions. Can. J. Microbiol. 29: 1022-1035. DOI: https://doi.org/10.1139/m83-160

Rennie, R; Defreitas, J. and Ruschel, A. (1983): N15- isotore dilution to queintify N2 fixation associated with Canadian and Brazilian wheat. Can. J. Bot. 61: 1667- 1671. DOI: https://doi.org/10.1139/b83-179

Rodrigues-Caceres, E. (1982): Improved medium for isolation of Azospirillum Spp. Appl. Environ. Microbial. 44: 990-991. DOI: https://doi.org/10.1128/aem.44.4.990-991.1982

Roper, M. and Ladha, J. (1995): Biological Nz fixation by heterotrophic bacteria in association with straw. Plant and soil 174: 211-224. DOI: https://doi.org/10.1007/978-94-011-0055-7_10

Schwarzenbach, G. and Biedermann, W. (1948): Komplexone – X – Erdalkalikomplexe von 0.0 – Dixyazofarbstoffen. Helv. Cim Acta. 31: 678-687. DOI: https://doi.org/10.1002/hlca.19480310303

Stevenson, F.J. (1994) Humus Chemistry, Genesis, Composition, Reastions. 2nd edition. John Wiley and Sons, Inc.

Stoffels, M.; Castellanos, T. and Hartmann, A. (2001): Design and application of new 168 rRNA-targeted oligonucleotide probes for the Azospirillum. Syst. Appl. Microbiol. 24: 83-97. DOI: https://doi.org/10.1078/0723-2020-00011

Tarrand, J.; Krieg, N. and Dobereiner, J. (1978): Ataxonomic study of the Spirillum lipoferum group with description of a new genus, Azospirillum gen. nov. Can. J. Microbiol. 24: 967-980. DOI: https://doi.org/10.1139/m78-160

Zamber, M.; Konde, B. and Sonar, K. (1984): Effect of Azospirillum brasiense under graded levels of nitrogen on growth and yield of wheat. Plant and soil. 79: 61- 67. DOI: https://doi.org/10.1007/BF02182144

Published

2011-12-31

How to Cite

Attitalla, I. H. . (2011). Effects of Azospirillum lipoferum strain isolated from Al Jabal Al Akhdar region and wheat straw on some physiological properties and nitrogen content of Triticum aestivum cultivars. Al-Mukhtar Journal of Sciences, 26(1), 9–25. https://doi.org/10.54172/mjsc.v26i1.164

Issue

Section

Research Articles

Categories