A laboratory study to evaluate the effect of some agricultural materials on the growth and sporulation of the fungi, Trichoderma harzianum and Pythium oli-gandrum

Authors

  • Nawara A. Mohamed Department of Plant Protection. Faculty of Agriculture, Omar Al-Mukhtar University, Libya
  • Asma Al-Mabrok Agriculture Research center , Libya
  • Amna. A. Al-MaBrok Department of Biology, Faculty of Education, University of Omar AL-Mukhtar, Libya

DOI:

https://doi.org/10.54172/mjsc.v32i2.189

Keywords:

Trichoderma harzianum, Pythium oligandrum, Agrichemical, plant Hormons, fertilizers, antibiotics

Abstract

This study was conducted at the Laboratory of plant pathology department,, Faculty of Agriculture, University of Omar Al-Mukhtar, Al-Bayda, Libya, to investigate the effect of some of the most common and commonly used agricultural materials in the region on isolated fungi of the native soils Trichoderma harzianum and Pythium oligandrum, These chemicals include pesticides such as Cyperkill , Goal, Benomyl, Dithane M 45, Chemical fertilizers (Urea, Nitrogen-Phosphate-Potassium (NPK), P18/46, Antibiotics : Phancomycin, streptomycin, chloramphenicol, tetracycline) in several concentrations, including the recommended concentration,The results showed that there were significant differences between the tested pesticides in the concentrations used to inhibit mycelium growth and that the inhibitory rate of mycelium growth of fungi. This effect was increased with the increase of the pesticide concentration.,The results showed that the treatment of fertilizer significantly reduced the growth of P. oligandrum and T. harzianum, especially the urea fertilizer which gave the highest effect, and recorded a decrease in dry weight by increasing concentration, and the ratio of the effect of treatment to 41% and 36.6% for both fungi respectively,While the treatment of fungi with hormones T. harzianum was more affected than the fungus P. oligandrum, Gibberellin gave high inhibition in growth and germination, By increasing its concentration this hormone decreases the dry weight, The high effect of tetracycline was recorded at the concentration of 0.012 mg/ml on mycelia growth and germination of the tested fungi.

 

Downloads

Download data is not yet available.

References

الحديثي، بهاء عبد الجبار وفرج، حسين عرنوص (2012). دور بكتيريا Azotobacter chroococcum والفطر Trichoderma harzianum في جاهزية النتروجين لنبات الشعير Hordeum vulgare. مجلة الكوفة للعلوم الزراعية 4 (2 ): 157-174.

الجبوري، صبا، باقر.(1998). اللقاح البكتيري Pseudomonas fluorescens على محصول القطن: الاستجابة والمقاومة الحيوية لمرض الخناق Rhizoctonia solani. رسالة ماجستير. كلية الزراعة. جامعة بغداد.

الخفاجي، حامد عبد زيد (2010). تأثير إضافة الأسمدة العضوية في بقاء مبيدي المقاومة الأحيائية تحدي وبيكونت – ت في التربة. مجلة جامعة بابل / العلوم الصرفة والتطبيقية 18 (2) : 628-633

الخفاف، آلاء عبـد علي (2006). مقارنة مـرض موت بادرات الخيار المتـسبب عن الفطـر aphanidermatium Pythium بالمبيــدين الحيــويين فلوراميــل وباســلين والمبيــد الكيميــائي بنتــانول ودورهــا فــي تحــسين صــفات النمو والإنتاج.أطروحة دكتوراة. كلية التربية للبنات-جامعة الكوفة.

السامرائي، فالح حسن سعيد وهادي مهدي عبود ومؤيد رجب عبود واسامة عبدالله علوان وعلي جبار. (2009). فعالية عزلات الفطرTrichoderma spp في ثبات شتلات النارنج بعد نقل وزيادة جاهزية بعض العناصر المغذية لها . المؤتمر العربي العاشر لعلوم وقاية النبات. بيروت 30-26 تشرين الأول

المبروك، أسماء صالح ونيس، محمود اكريم احويطى، عزالدين محمد العوامي، محمد على موسى آدم (2010). تأثير التسميد الحيويّ البوتاسي على التداخل بين نماتودا تعقد الجذورMeloidogyne incognita وفطر الفيوزاريم Fusarium oxysporum F. sp Lycopersici على نباتات الطماطم. المجلة الليبية لوقاية النبات 1: 17-37.

ديوان، مجيد متعب ، علاء عيدان حسن و مجيد جاسم جياد الزرفي (2010). دراسة تأثير أنسجة التربة وعدد مرات إضافة الأسمدة الكيمياوية في فعالية الفطرين الممرضين Fusarium graminearum (F.g.) وRhizoctonia solani (R.s.) و فطري المقاومة الأحيائية. T.harzianuma.و P.oxalicum. ونمو وإنتاج نباتات الحنطة. مجلة الكوفة للعلوم الزراعية 2: 233-255.

حسن، عبدالله عبد الكريم (2011). تحمل بعض المبيدات الكيمياوية من قبل عزلات محمية من الفطر Trichoderma sp. وتقييم كفاءة منتوجهاالحيوي الخارج خلوي في تثبيط بعض الفطريات الممرضة وغير الممرضة للنبات, المؤتمر العلمي الخامس لكلية الزراعة جامعة تكريت 26-27 نيسان. 424-430.

عبدالله، كوثر السنوسي (2017). دراسة الكفاءة التضادية للفطر (Pythium oligandrum) على بعض ممرضات النبات الفطرية. رسالة ماجستير. قسم وقاية النبات،كلية الزراعة. جامعة عمر المختار، البيضاء، ليبيا.

Abd-El Moity TH, Papavizas GC,and Shatla MN, )1982(. Induction of new isolates of Trichoderma harzianum tolerant to fungicides and their experimental use for control of white rot of onion. Phytopathology, 72(4):396-400. DOI: https://doi.org/10.1094/Phyto-72-396

Al-kurtany,A. E., Hassan , A. A. and Jbara I. M. )2009( Determination of minimum concentration of some chemical fungicides that not affected with biocide Trichoderma harzianum and its effect on some phytopathogens fungi. Tikrit j. A. Sci. (3):191-213.

Alabouvette, C.; Hoeper, H. ; Lamaceau, p. and Steinberg, C. (1996). Soil suppressiveness to diseases induced by soil born plant. Dakker. Lnc. New York.p : 371-413.

Anderson, J.R. (1978). Pesticide effect on non-target soil microorganisms; in Pesticide Microbiology, Eds., Hill, I.R. and Wright, S.J.L. London: Academic Press, pp: 313-533.

Askar, A. I., Ibrahim, G. H. and Osman, K. A. (2007). Biodegradation kinetics of bromoxynil as a pollution control technology. Egyptian Journal of Aquatic Research 33(3):111–121.

Bagwan, N.B. (2010). Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integrated management of soil borne disease of soybean [Glycin max (L.) Merril]. International Journal of Plant Protection 3(2): 206–209.

Bhai, R. S. and Thomas, J. (2010). Compatibility of Trichoderma harzianum (Rifai) with fungicides, insecticides and fertilizers. Indian Phytopath., 63 (2): 145-148.

Bulluck L.R., and Ristaino J.B., (2002) Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes, Am. Phytopathol. Soc. 92:181–189. DOI: https://doi.org/10.1094/PHYTO.2002.92.2.181

Caldwell, R. (1958). Fate of spores of Trichoderma viride Pers. ex. Fr. Introduced into soil. Nature. 181, 1144-1145. DOI: https://doi.org/10.1038/1811144a0

Chanclud E. and Morel, J-B. T., (2016). Plant hormones: a fungal point of view. Molecular Plant Pathology 17(8) , 1289–1297. DOI: https://doi.org/10.1111/mpp.12393

DluZniewska J. (2003). Reaction of fungi of Trichoderma genus to selected abiotic factors. Electronic Journal of Polish Agricultural Universities, Agronomy, 6(2):1-13.

El - Gali, Z. I. (2003). Histopathological and biochemical studies on Phaseolus vulgaris seeds infected by some seed-borne fungi. Ph.D. Thesis. Alexandria University. 300 pp.

Elad, Y. (2002). Ethylene and reactive oxygen speciesin a plant-pathgen system. Phytoparasitica 30:307.

El-Kazzaz, M. K., Sommer, N. F., and Kader, A. A. (1983). Ethylene effects on in vitro and in vivo growth of certain postharvest fruit infectingfungi. Phytopatology 73:998-1001.

Fayyadh, M. A. and Qassim, M. M. (2011). Influence of pesticides on antagonistic activity of Trichoderma harzianum (Rifai) against Rhizoctonia solani (Kuhu) in laboratory.

Gouma, S,. (2009). Biodegradation of mixtures of pesticides by bacteria and white rot fungi. growth of certain postharvest fruit infecting fungi. Phytopatology 73:998-1001. DOI: https://doi.org/10.1094/Phyto-73-998

Gupta P. (2010) A handbook of Soil, Fertilser and Manure, Agrobios, India, pp 564 .

Harman, G. E (2000). The myths and dogmas of biocontrol Changes in perception derived from research on Trichoderma harzianum strain T.22 . Plant Dis. 48 : 377-393 . DOI: https://doi.org/10.1094/PDIS.2000.84.4.377

Hasan HAH (2002). Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinnávýroba., 3: 101-106. DOI: https://doi.org/10.17221/4207-PSE

Hendrix, J.W. and Lauder, D.K.(1966). Effects of polyene antibiotics on growth and sterol-induction of oospore formation by Pythium periplocum. J.Gen. Microbiol. 44:115-120. DOI: https://doi.org/10.1099/00221287-44-1-115

Howel C. R., (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of cur- rent concepts, Plant Disease 87:4–10. DOI: https://doi.org/10.1094/PDIS.2003.87.1.4

Kepczynska, E. (1993). Involvement of ethylene in the regulation of growth and development of the fungus Botrytis cinerea Pers. ex. Fr. Plant Growth Regulators 13:65-69. DOI: https://doi.org/10.1007/BF00207593

Khattabi, N. Ezzahiri, B.. Louali L, and Abdallah Oihabi.( 2004) Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, EDP Sciences, , 24 (5):.281-288. DOI: https://doi.org/10.1051/agro:2004026

Kredics, L., Antal, Z., Manczinger, L., Szekeres, A., Kevei, F. and Nagy, E. (2003). Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol. Biotechnol., 41(1): 37-42.

Le Floch, G. Benhamou, N. Mamaca, E. Salerno, MI. Tirilly, Y.and Rey, P.(2005). Characterisation of the early events in atypical tomato root colonisation by a biocontrol agent, Pythium oligandrum. Plant Physiol. Biochem. 43: 1-11. DOI: https://doi.org/10.1016/j.plaphy.2004.10.005

Mandal S M, Mondal KC, Dey S, and Pati BR (2007). Optimization of cultural and nutritional conditions for Indol-3- Acetic Acid (IAA) production by a Rhizobium sp. Isolated from root nodules of Vingamungo (L.) Hepper. Res. J. Microbial., 2:239-246. DOI: https://doi.org/10.3923/jm.2007.239.246

Matti D., and Sen C. (1985) Integrated biocontrol of Sclerotium rolfsii with nitrogen fertilizers and Trichoderma harzianum, Indian J. Agric. Sci. 55:464–468.

Mazereku. H. (2012). Evaluation of Trichoderm a enhanced fertilizers on growth of Common beans (Phaseolus vulgarise). Master of Science Degree in Biotechnology. University of Nairobi.

Mehrotra, R. S. Aneja, K. R. and Aggarwal, A. (1997). Fungal control agents. In: Environmentally safe approaches to crop disease control.(Rechcigl, N.A. and Rechcigl, J. E. eds.) pp. 111-137. CRC. Press. DOI: https://doi.org/10.1201/9781351071826-8

Mohamed, N. A. El-Gali, Z. I. and Akila ,A. A..(2014). First Record Of Pythium oligandrum From Libya Soli. Persian Gulf Crop Protection.3 : 79-86.

Mohamed, N.(2006). Pythium et Pythiun: Rôle dans les relation vigne/Botrytis cinerea. Ph. D. Thsis of Biochimie, Biologie cellulaire et Moleculaire. Ecole Doctorale des Sciences de la vie et de la sante Bourgogne university France.

Pandey, A. and Kumar, S. (1989). Potential of Azotobactar and Azospirillium as biofertilizers for upland agriculture. Rev. J. Sci. & industal. Res. 48:134-144.

Papavizas G. C., (1985) Trichoderma and Gliocladium: Biology, ecology and potential for biocontrol, Ann. Rev. Phytopathol. 23 23–54. DOI: https://doi.org/10.1146/annurev.py.23.090185.000323

Patkar RN and Naqvi NI (2017) Fungal manipulation of hormone-regulatedplant defense. PLoS Pathog 13(6):e1006334. DOI: https://doi.org/10.1371/journal.ppat.1006334

Schlosser, E. and Gottlieb,D.(1966). Sterols and sensitivity of Pythium species to filipin. J. Bacteriol. 91:1080-1084. DOI: https://doi.org/10.1128/jb.91.3.1080-1084.1966

Serrano, M. S. De Vita, P. Fernandez-Rebollo, P. and Hernandez, M.E.S.(2012). Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. Eur. J. Plant Pathol. 132: 271-279. DOI: https://doi.org/10.1007/s10658-011-9871-6

Tamilselvan, C., Pramila, B., Hemananthan, E., Hariharan, B. and Devarajan, N. (2008). Aerobic degradation of the insecticide, imidacloprid by the antagonistic organisms, Pseudomonas fluorescens and Trichoderma viride under in-vitro conditions. Pestology 32 (9): 16-19.

Tapwal, A., Kumar, R., Gautam, N. and Pandey, S. (2012). Compatibility of Trichoderma viride for selected fungicides and botanicals. Int. J. Plant Pathol., 1- 6. DOI: https://doi.org/10.3923/ijpp.2012.89.94

Vesely, D.(1979). The protective effect in the rhizosphere of sugarbeet by the iritroduction of the mycelium of Pythium oligandrum. Ochr. Rost. 15: 53-56.

Vinale F., Sivasithamparamb K. L. E., Ghisalbertic K.E.L., Marraa R., Woo,S.L and Lorito M. (2008) Trichoderma- plant -pathogen interactions. Soil Biology & Biochemistry 40:1-10. DOI: https://doi.org/10.1016/j.soilbio.2007.07.002

Vleesschauwer, D., Xu, J. and Hofte, M. (2014) Making sense of hormone mediated defense networking: from rice to Arabidopsis. Front. Plant Sci. 5: 1–15. DOI: https://doi.org/10.3389/fpls.2014.00611

Waqas M. Khan, A. Kamran, M. Hamayun, M. Kang, S-M. Kim, Y.-H. and Lee, I-J.(2012). Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress. Molecules, 17: 10754-10773. DOI: https://doi.org/10.3390/molecules170910754

Zhuang ,J., Gao, Z., Yang, C., Liu, X. and Chen,J. (2004). Effect of microelement and chemical fungicides on biocontrol effect of Trichoderma T23. Agric. & life Sci. 30: (4).

Published

2017-12-31

How to Cite

Mohamed, N. A., Al-Mabrok , A., & Al-MaBrok, A. A. (2017). A laboratory study to evaluate the effect of some agricultural materials on the growth and sporulation of the fungi, Trichoderma harzianum and Pythium oli-gandrum. Al-Mukhtar Journal of Sciences, 32(2), 173–187. https://doi.org/10.54172/mjsc.v32i2.189

Issue

Section

Research Articles

Categories