Sexual Dimorphism and Morphological Variation in the Populations of Akis costitubera Marseul (Coleoptera: Tenebrionidae) By Using a Geometric Morpho- metric Approach


  • Sara N. Abd-Alaziz Department of Zoology, Faculty of science Omar Al-Mukhtar University, El-Beida, Libya
  • Ali A. Bataw Department of Zoology, Faculty of science Omar Al-Mukhtar University, El-Beida, Libya
  • Tarig S. Elmabrouk Department of Mathematic, Faculty of science Omar Al-Mukhtar University, El-Beida, Libya



Akis costitubera, sexual dimorphism, geometric morphology


The present study was conducted to evaluate the differences related to area of males and females of Akis costitubera Marseul by using morphometric geometric technique. The study was accomplished by using photographic records of each individual in ventral views by using a CELES- TRON X-150 digital camera. A matrix of photographs for each view was constructed using the TpsUtil program. In each view, we used 26 homologous landmarks which were digitized in the TPSdig2 program. 30 males and 30 females individuals were collected, photographed, and 26 land- marks from ventral views were digitized. We used a multivariate analysis of morphological variation. The results revealed significant differences between male and female (P<0.005), and the surface area of females was larger than that for males. The study concludes that sexual dimorphism occurred in the population of A. costitubera Marseul where these differences raise the question of whether sexual dimorphism may be modulated by natural selection.


Download data is not yet available.


Metrics Loading ...


Adams, D. C., & Funk, D. J. (1997). Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin-plate spline. Systematic Biology, 46(1), 180-194. DOI:

Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16. DOI:

Alibert, P., Moureau, B., Dommergues, J. L., & David, B. (2001). Differentiation at a microgeographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): a geometrical morphometric approach. Zoologica Scripta, 30(4), 299-311. DOI:

Andersson, M. B. (1994). Sexual selection: Princeton University Press. DOI:

Auffray, J.-C., Alibert, P., Renaud, S., Orth, A., & Bonhomme, F. (1996). Fluctuating asymmetry in Mus musculus subspecific hybridization Advances in morphometrics (pp. 275-283): Springer. DOI:

Benítez, H. A., Briones, R., & Jerez, V. (2010). Intra and inter-population morphological variation of shape and size of the Chilean magnificent beetle, Ceroglossus chilensis in the Baker River Basin, Chilean Patagonia. Journal of Insect Science, 11(1). DOI:

Benítez, H. A., Vidal, M., Briones, R., & Jerez, V. (2010). Sexual dimorphism and morphological variation in populations of Ceroglossus chilensis (Eschscholtz, 1829)(Coleoptera, Carabidae). Journal of the Entomological Research Society, 12(2), 87-95.

Bookstein, F. L. (1996). Combining the tools of geometric morphometrics Advances in morphometrics (pp. 131-151): Springer. DOI:

Cepeda-Pizarro, J., Vásquez, H., Veas, H., & Colon, G. (1996). Relaciones entre tamaño corporal y biomasa en adultos de Tenebrionidae (Coleoptera) de la estepa costera del margen meridional del desierto chileno. Revista Chilena de Historia Natural, 69, 67-76.

Dryden I. L., & Mardia K. V. (1998). Statistical shape analysis. John Wiley & Sons, New York.

David, B., & Laurin, B. (1996). Morphometrics and cladistics: measuring phylogeny in the sea urchin Echinocardium. Evolution, 50(1), 348-359. DOI:

Fink, W. L., & Zelditch, M. L. (1995). Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Systematic Biology, 44(3), 343-360. DOI:

Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52(5), 1363-1375. DOI:

Lawing, A. M., & Polly, P. D. (2010). Geometric morphometrics: recent applications to the study of evolution and development. Journal of Zoology, 280(1), 1-7. DOI:

Losos, J. B., & Miles, D. B. (1994). Adaptation, constraint, and the comparative method: phylogenetic issues and methods. Ecological morphology: integrative organismal biology, 60, 98.

Loy, A. (1993). Landmark data: size and shape analysis in systematics. A case study on Old World Talpidae (Mammalia, Insectivora). Contribution to Morphometrics.

Naylor, G. J. (1996). Can partial warp scores be used as cladistic characters? Advances in morphometrics (pp. 519-530): Springer. DOI:

Rohlf, F. (2015). The tps series of software. Hystrix 26: 9–12.

Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution, 55(11), 2143-2160. DOI:

Zelditch, M. L., Bookstein, F. L., & Lundrigan, B. L. (1993). The ontogenetic complexity of developmental constraints. Journal of Evolutionary Biology, 6(5), 621-641. DOI:

Zelditch, M. L., Fink, W. L., & Swiderski, D. L. (1995). Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Systematic Biology, 44(2), 179-189. DOI:




How to Cite

Abd-Alaziz, S. N. ., Bataw, A. A., & Elmabrouk, T. S. . (2019). Sexual Dimorphism and Morphological Variation in the Populations of Akis costitubera Marseul (Coleoptera: Tenebrionidae) By Using a Geometric Morpho- metric Approach. Al-Mukhtar Journal of Sciences, 34(1), 1–6.



Research Articles


Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.