Investigation of the Molecular Mechanisms Leading to Protein Translation Inhibition in Response to Endoplasmic Reticulum Stress


  • Abdulsalam Elfowiris Department of Pharmacology and Toxicology, OmarAl-MukhtarUniversity, Al-Bayda -Libya
  • Terence P. Herbert School of Health and Biomedical Sciences



ER stress, PERK, Translation, UPR, Protein synthesis, Firefly, Renilla, MIN6


Protein folding is an important process for cellular function. ER is responsible for the synthesis, folding, modification, and quality control of numerous secretory and membrane proteins. The intracellular disturbance caused by different stressors leading to the accumulation of unfolded/ misfolded proteins can all lead to an alteration in ER homeostasis. If the unfolded/misfolded proteins continue to accumulate inside the ER, the unfolded protein response (UPR) is induced to overcome this situation. UPR acts by three different mechanisms:(1) increase the ER protein-folding capacity (Robertsonand Branch, 1987),(2) reduce global protein synthesis, and (3) enhance ER-associated degradation process. The UPR is mediated by three ER transmembrane protein sensors: (1) activating transcription factor 6 (ATF6), (2) inositol requiring kinase 1(IRE1), and (3) double-stranded RNA-activated protein kinase (PKR) like endoplasmic reticulum kinase (PERK). Each sensor of the UPR protein responds to the certain level of unfolded/misfolded protein in the ER. If the cell fails to restore or overcome the protein-folding defect, cell-death signaling pathways are activated.


Download data is not yet available.


Altmann, M., Schmitz, N., Berset, C., & Trachsel, H. (1997). A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. The EMBO Journal,, 16(5), 1114-1121. DOI:

Back, S. H., & Kaufman, R. J. (2012). Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem, 81, 767-793. DOI:

Browne, G. J., & Proud, C. G. (2002). Regulation of peptide-chain elongation in mammalian cells. European Journal of Biochemistry, 269(22), 5360-5368. DOI:

Chan, S. W., & Egan, P. A. (2009). Effects of hepatitis C virus envelope glycoprotein unfolded protein response activation on translation and transcription. Archives of Virology, 154(10), 1631-1640. DOI:

Consultation, W. (1999). Definition, diagnosis and classification of diabetes mellitus and its complications: World Health OrganizationPart 1 p 65.

Dever, T. E., Chen, J. J., Barber, G. N., Cigan, A. M., Feng, L., Donahue, T. F., . . . Hinnebusch, A. G. (1993). Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proceedings of the National Academy of Sciences U S A, 90(10), 4616-4620. DOI:

Duncan, R. F., & Hershey, J. W. (1989). Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation.The Journal of Cell Biology, 109(4 Pt 1), 1467-1481. DOI:

Evans-Molina, C., Hatanaka, M., & Mirmira, R. G. (2013). Lost in translation: endoplasmic reticulum stress and the decline of beta-cell health in diabetes mellitus. Diabetes Obes Metab, 15 Suppl 3, 159-169. DOI:

Friedland, D. E., Wooten, W. N., LaVoy, J. E., Hagedorn, C. H., & Goss, D. J. (2005). A mutant of eukaryotic protein synthesis initiation factor eIF4E(K119A) has an increased binding affinity for both m7G cap analogues and eIF4G peptides. Biochemistry, 44(11), 4546-4550. DOI:

Gingras, A. C., Raught, B., & Sonenberg, N. (1999). eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annual Review of Biochemistry,, 68, 913-963. doi:10.1146/annurev.biochem.68.1.913 DOI:

Haghighat, A., Mader, S., Pause, A., & Sonenberg, N. (1995). Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. The EMBO Journal, 14(22), 5701-5709. DOI:

Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell, 6(5), 1099-1108. DOI:

Harding, H. P., & Ron, D. (2002). Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes, 51 Suppl 3, S455-461. DOI:

Harding, H. P., Zhang, Y. H., Bertolotti, A., Zeng, H. Q., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular Cell, 5(5), 897-904. DOI:

Hellen, C. U. (2009). IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim Biophys Acta, 1789(9-10), 558-570. DOI:

Herbert, T. P., & Laybutt, D. R. (2016). A Reevaluation of the Role of the Unfolded Protein Response in Islet Dysfunction: Maladaptation or a Failure to Adapt? Diabetes, 65(6), 1472-1480. DOI:

Hinnebusch, A. G. (2011). Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiology and Molecular Biology Reviews, 75(3), 434-467. DOI:

Hinnebusch, A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annual Review of Biochemistry, , 83, 779-812. DOI:

Hinnebusch, A. G., & Lorsch, J. R. (2012). The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harbor Laboratory Press, 27pp. DOI:

Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation.Nature Reviews Molecular Cell Biology, 11(2), 113-127. DOI:

Kapp, L. D., & Lorsch, J. R. (2004). The molecular mechanics of eukaryotic translation. Annual Review of Biochemistry, 73, 657-704. DOI:

Komar, A. A., & Hatzoglou, M. (2005). Internal ribosome entry sites in cellular mRNAs: mystery of their existence. The Journal of Biological Chemistry, 280(25), 23425-23428. DOI:

Ma, X. M., & Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nature Reviews Molecular Cell Biology, 10(5), 307-318. DOI:

MacCallum, P. R., Jack, S. C., Egan, P. A., McDermott, B. T., Elliott, R. M., & Chan, S. W. (2006). Cap-dependent and hepatitis C virus internal ribosome entry site-mediated translation are modulated by phosphorylation of eIF2alpha under oxidative stress. Journal of General Virology,, 87(Pt 11), 3251-3262. DOI:

Meijer, H. A., Kong, Y. W., Lu, W. T., Wilczynska, A., Spriggs, R. V., Robinson, S. W., Bushell, M. (2013). Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science, 340(6128), 82-85. DOI:

Merrick, W. C. (2010). Eukaryotic protein synthesis: still a mystery. The Journal of Biological Chemistry, 285(28), 21197-21201. DOI:

Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320-325. DOI:

Pestova, T. V., Hellen, C. U., & Shatsky, I. N. (1996). Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry.Molecular and Cellular Biology,, 16(12), 6859-6869. DOI:

Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J., & Hellen, C. U. (1998). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes & Development, 12(1), 67-83. DOI:

Proud, C. G. (2007). Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochemical Journal, 403(2), 217-234. DOI:

Robertson, H. D., & Branch, A. D. (1987). RNA processing--a meeting review. Genes & Development, 1(5), 415-417. DOI:

Rojas, M., Vasconcelos, G., & Dever, T. E. (2015). An eIF2alpha-binding motif in protein phosphatase 1 subunit GADD34 and its viral orthologs is required to promote dephosphorylation of eIF2alpha. Proceedings of the National Academy of SciencesU S A, 112(27), E3466-3475. DOI:

Vagner, S., Galy, B., & Pyronnet, S. (2001). Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep, 2(10), 893-898. DOI:

Wek, R. C., Jiang, H. Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(Pt 1), 7-11. DOI:

Wortham, N. C., & Proud, C. G. (2015). eIF2B: recent structural and functional insights into a key regulator of translation. Biochemical Society Transactions, 43(6), 1234-1240. DOI:




How to Cite

Elfowiris, A. ., & Herbert , T. P. . (2018). Investigation of the Molecular Mechanisms Leading to Protein Translation Inhibition in Response to Endoplasmic Reticulum Stress. Al-Mukhtar Journal of Sciences, 33(3), 169–181.



Research Articles