Amplified Fragment Length Polymorphism (AFLP)

Authors

  • Khaled Elmeer Horticulture Department, Faculty of Agriculture, Omar AL-Mukhtar University Libya
  • Mohamed Bakory Animal production Department Faculty of Agriculture, Sabha University Libya

DOI:

https://doi.org/10.54172/mjsc.v31i1.213

Keywords:

Genetic diversity, molecular markers, restriction enzymes, selective primers

Abstract

Amplified Fragment Length Polymorphism (AFLP)is one of the most important molecular marker techniques which is used for fingerprinting and genetic diversity study, AFLP based on detecting of DNA fragments which are digested by restriction enzymes then amplified by polymerase chain reaction PCR, the fragments are visualized on polyacrylamide gels or by using fluorescent detection in capillary systems. This article provides a detailed review for principles, methodologies, applications, advantages and limitations of AFLP.

Downloads

Download data is not yet available.

References

أبوالجدايل، رحيم. (2014). التقانات الحيوية - البيولوجيا الجزيئية و الهندسة الوراثية.

http://raheemaboualjadayel.blogspot.com/2014/04/ssr-issrrapdrflpaflp-pcr-uv.html. Accessed March 2016.

الساهوكي، مدحت مجيد. (2006). تربية النبات بمساعدة المعلمات الجزيئية. مجلة العلوم الزراعية العراقية، 4: 67-72.

السيد، هيثم؛ كيال حامد، جهور أحمد، و باوم مايكل. (2002). تحديد مورث المقاومة لمرض البياض الدقيقي والمؤشرات الدناوية المرتبطة به في هجين(Hordeum vulgare L.) من الشعير. مجلة جامعة دمشق للعلوم الزراعية، 18: 13-32

حسين، جنان قاسم (2012). دراسة الإختلافات الوراثية لأنواع نبات الداودي بإستخدام مؤشرات AFLP. مجلة جامعة النهرين، 15 :32-39. DOI: https://doi.org/10.22401/JNUS.15.1.31

خاروف، شعلة؛ العظمة محمد فواز، يحياوي عمر و باوم مايكل. (2012). التباين الوراثي و التوزع الإقليمي لمجتمع فطر الصدأ المخطط الأصفر Puccinia striiformis f. sp triticiعلى القمح في سورية باستخدام المؤشرات الجزيئية للدنا (AFLP) خلال موسمي 2006 و 2007. مجلة جامعة دمشق للعلوم الزراعية، 28 : 455-472.

Agarwal, M., N. Shrivastava and H. Padh. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant cell reports, 27:617-631. DOI: https://doi.org/10.1007/s00299-008-0507-z

Becker, J., P. Vos, M. Kuiper, F. Salamini and M. Heun. (1995). Combined mapping of AFLP and RFLP markers in barley. Molecular and General Genetics, 249:65-73. DOI: https://doi.org/10.1007/BF00290237

Benjak, A., J. Konradi, R. Blaich and A. Forneck. (2006). Different DNA extraction methods can cause different AFLP profiles in grapevine. Vitis vinifera:15-21.

Benslimane, H., S. Lababidi, A. Yahyaoui, F. Ogbonnaya, Z. Bouznad and M. Baum. (2013). Genetic diversity of Pyrenophora tritici-repentis in Algeria as revealed by Amplified Fragement Length Polymorphism (AFLP) analysis. African Journal of Biotechnology, 12:4082-4093.

Caetano, A.R., Y. L. Shiue, L. A. Lyons, S. J. O'Brien, T. F. Laughlin, A. T. Bowling and J. D. Murray. (1999). A comparative gene map of the horse (Equus caballus). Genome research, 9:1239-1249. DOI: https://doi.org/10.1101/gr.9.12.1239

Dasmahapatra, K., J. Hoffman and W. Amos. (2009). Pinniped phylogenetic relationships inferred using AFLP markers. Heredity, 103:168-177. DOI: https://doi.org/10.1038/hdy.2009.25

Diaz, S., C. Pire, J. Ferrer and M.J. Bonete. (2003). Identification of Phoenix dactylifera L. varieties based on Amplified Fragment Length Polymorphism (AFLP) markers. Cellular and Molecular Biology Letters, 8:891-900.

Dorji, K. and C. Yapwattanaphun. (2015). Assessment of the genetic variability amongst mandarin (Citrus reticulata Blanco) accessions in Bhutan using AFLP markers. BMC Genetics, 16:1-7. DOI: https://doi.org/10.1186/s12863-015-0198-8

El-Khalifeh, M., A. El-Ahmed, A. Al-Saleh and M. Nachit. (2009). Use of AFLPs to differentiate between Fusarium species causing root rot disease on durum wheat (Triticum turgidum L. var. durum). African Journal of Biotechnology, 8:4347-4352.

Gao, Y., Y. Tu, H. Tong, K. Wang, X. Tang and K. Chen. (2008). Genetic variation of indigenous chicken breeds in China and a Recessive White breed using AFLP fingerprinting. South African Journal of Animal Science, 38:193-200. DOI: https://doi.org/10.4314/sajas.v38i3.4129

Gort, G. and F. A. van Eeuwijk. (2010). Codominant scoring of AFLP in association panels. Theoretical and Applied Genetics, 121:337-351. DOI: https://doi.org/10.1007/s00122-010-1313-x

Griffiths, R. and K. Orr. (1999). The use of Amplified Fragment Length Polymorphism (AFLP) in the isolation of sex‐specific markers. Molecular Ecology, 8:671-674. DOI: https://doi.org/10.1046/j.1365-294x.1999.00578.x

Gustavo, R., J. Robert and H. Klaus., (2006). An optimized method for the generation of AFLP markers in a stingless bee (Melipona quadrifasciata) reveals a high degree of intracolonial genetic polymorphism. Apidologie, 37:687-698. DOI: https://doi.org/10.1051/apido:2006043

Hamwieh, A., S. Udupa, W. Choumane, A. Sarker, F. Dreyer, C. Jung and M. Baum. (2005). A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theoretical and Applied Genetics, 110:669-677. DOI: https://doi.org/10.1007/s00122-004-1892-5

Hoda, A., L. Sena and G. Hykaj. (2012). Genetic diversity revealed by AFLP markers in Albanian goat breeds. Archives of Biological Sciences, 64:799-807. DOI: https://doi.org/10.2298/ABS1202799H

Ipek, M., M. Seker, A. Ipek and M. Gul. (2015). Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits. Genetics and Molecular Research, 14:2762-2774. DOI: https://doi.org/10.4238/2015.March.31.6

Janssen, P., R. Coopman, G. Huys, J. Swings, M. Bleeker, P. Vos, M. Zabeau and K. Kersters. (1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology, 142:1881-1893. DOI: https://doi.org/10.1099/13500872-142-7-1881

Jonah, P., L. Bello, O. Lucky, A. Midau and S. Moruppa. (2011). Review: The importance of molecular markers in plant breeding programmes. Global journal of science frontier research, 11: 5-12.

Jubrael, J.M., S.M. Udupa and M. Baum. (2005). Assessment of AFLP-based genetic relationships among date palm (Phoenix dactylifera L.) varieties of Iraq. Journal of the American Society for Horticultural Science, 130:442-447. DOI: https://doi.org/10.21273/JASHS.130.3.442

Karahan, A., G. B. Kılıç, A. Kart, H. Ş. Aloğlu, Z. Öner, S. Aydemir, O. Erkuş and Ş. Harsa. (2010). Genotypic identification of some lactic acid bacteria by Amplified Fragment Length Polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture. Journal of dairy science, 93:1-11. DOI: https://doi.org/10.3168/jds.2008-1801

Levin, R. E. (2008). DNA-based technique: Polymerase Chain Reaction (PCR). In: Modern techniques for food authentication. Ed.: Daw-Wen Sun, Elsevier, Burlington, USA, P:411-476.

Liu, Z. and J. Cordes. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238:1-37. DOI: https://doi.org/10.1016/j.aquaculture.2004.05.027

Martinelli, F., R. Scalenghe, S. Davino, S. Panno, G. Scuderi, P. Ruisi, P. Villa, D. Stroppiana, M. Boschetti and L.R. Goulart. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35:1-25. DOI: https://doi.org/10.1007/s13593-014-0246-1

Masumu, J., D. Geysen, E. Vansnick, S. Geerts and P. Van den Bossche. (2006). A modified AFLP for Trypanosoma congolense isolate characterisation. Journal of biotechnology, 125:22-26. DOI: https://doi.org/10.1016/j.jbiotec.2006.01.016

Negrini, R., I. Nijman, E. Milanesi, K. Moazami‐Goudarzi, J. Williams, G. Erhardt, S. Dunner, C. Rodellar, A. Valentini and D. Bradley. (2007). Differentiation of European cattle by AFLP fingerprinting. Animal Genetics, 38:60-66. DOI: https://doi.org/10.1111/j.1365-2052.2007.01554.x

Oleszczuk, S., J. Zimny and P. T. Bednarek. (2002). The application of the AFLP method to determine the purity of homozygous lines of barley (Horedum vulgare L.). Cellular and Molecular Biology Letters, 7:777-784.

Ozkan, H., S. Kafkas, M.S. Ozer and A. Brandolini. (2005). Genetic relationships among South-East Turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theoretical and Applied Genetics, 112:12-20. DOI: https://doi.org/10.1007/s00122-005-0067-3

Piepho, H.-P. and G. Koch. (2000). Codominant analysis of banding data from a dominant marker system by normal mixtures. Genetics, 155:1459-1468. DOI: https://doi.org/10.1093/genetics/155.3.1459

Powell, W., W. Thomas, E. Baird, P. Lawrence, A. Booth, B. Harrower, J. Mcnicol and R. Waugh. (1997). Analysis of quantitative traits in barley by the use of Amplified Fragment Length Polymorphisms. Heredity, 79:48-59. DOI: https://doi.org/10.1038/hdy.1997.122

Rao, H., J. Deng, W. Wang and Z. Gao. (2012). An AFLP-based approach for the identification of sex-linked markers in blunt snout bream, Megalobrama amblycephala (Cyprinidae). Genetics and molecular research, 11:1027-1031. DOI: https://doi.org/10.4238/2012.April.19.7

Sasanuma, T., K. Chabane, T. Endo and J. Valkoun. (2004). Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theoretical and Applied Genetics, 108:612-618. DOI: https://doi.org/10.1007/s00122-003-1485-8

Saunders, J.A., S. Mischke and A. Hemeida. (2001). The use of AFLP techniques for DNA fingerprinting in plants. Beckman Coulter Application Notes, A1910A: l-9.

Savelkoul, P., H. Aarts, J. De Haas, L. Dijkshoorn, B. Duim, M. Otsen, J. Rademaker, L. Schouls and J. Lenstra. (1999). Amplified-Fragment Length Polymorphism analysis: the state of an art. Journal of clinical microbiology, 37:3083-3091. DOI: https://doi.org/10.1128/JCM.37.10.3083-3091.1999

Scott, K.D., E.M. Ablett, L.S. Lee and R.J. Henry. (2000). AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica, 113:243-247. DOI: https://doi.org/10.1023/A:1003977408214

Semagn, K., Å. Bjørnstad and M. Ndjiondjop. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5:2540-2568.

Solé, M. (2004). Factors affecting the genotypic and genetic diversity of the dioecious clonal plant Cirsium arvense at the metapopulation level. UFZ- Leipzig-Halle GmbH.

Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, A. Friters, J. Pot, J. Paleman and M. Kuiper. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic acids research, 23:4407-4414. DOI: https://doi.org/10.1093/nar/23.21.4407

Wang, Z., P. Jayasankar, S. Khoo, K. Nakamura, K. Sumantadinata, O. Carman and N. Okamoto. (2000). AFLP fingerprinting reveals genetic variability in common carp stocks from Indonesia. Asian Fisheries Science, 13:139-147.

Wu, R., Y. Han, J. Hu, J. Fang, L. Li, M. Li and Z.-B. Zeng. (2000). An integrated genetic map of Populus deltoides based on Amplified Fragment Length Polymorphisms. Theoretical and Applied Genetics, 100:1249-1256. DOI: https://doi.org/10.1007/s001220051431

Zabeau, M. and P. Vos. (1993). Selective restriction fragment amplification: A general method for DNA fingerprinting. European patent application, 92402629.

Zhang, P., H. Zhou, C. Lan, Z. Li and D. Liu. (2015). An AFLP marker linked to the leaf rust resistance gene LrBi16 and test of allelism with Lr14a on chromosome arm 7BL. The Crop Journal, 3:152-156. DOI: https://doi.org/10.1016/j.cj.2014.11.004

Zulini, L., E. Peterlunger and E. Fabro. (2005). Characterization of the grapevine cultivar Picolit by means of morphological descriptors and molecular markers. Vitis,44:35-38.

Published

2016-06-30

How to Cite

Elmeer, K. ., & Bakory, M. . (2016). Amplified Fragment Length Polymorphism (AFLP). Al-Mukhtar Journal of Sciences, 31(1), 73–91. https://doi.org/10.54172/mjsc.v31i1.213

Issue

Section

Research Articles

Categories