α-Reflexive Rings with Involution

Authors

  • Muna E. Abdulhafed Department of Mathematics, Faculty of Science, Azzaytuna University, Tarhunah, Libya
  • Aafaf E. Abduelhafid Department of Mathematics - Faculty of Education, Azzaytuna University, Tarhunah, Libya

DOI:

https://doi.org/10.54172/mjsc.v36i1.22

Keywords:

*-reduced, *-rigid, α-*-rigid, α-*-IFP, α-quasi-*-IFP, α-*-reversible, α-*-reflexive *-rings

Abstract

This paper studies the concept of the -quasi-*-IFP (resp.,  -*-reflexive) *-rings, as a generalization of the quasi-*-IFP (resp., *-reflexive) *-rings and every quasi-*-IFP (resp., *-reflexive) *-ring is  -quasi-*-IFP (resp., -*-reflexive). This paper also discusses the sufficient condition for the quasi-*-IFP (resp., *-reflexive) *-ring in order to be -quasi-*-IFP (resp., -*- reflexive). Finally, this study investigates the -quasi-*-IFP (resp., -*-reflexivity) by using some types of the polynomial rings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdulhafed, M. E. (2019). A Study of Reflexive and Reversible Rings with Involution (Unpublished Doctoral disserta-tion). Faculty of Science -Alexandria University.

Aburawash, U. A. (1997). On Embeding of Involution Rings.pdf. Mathematica Pannonica, 8(2), 245–250.

Aburawash, U. A., & Abdulhafed, M. E. (2018a). On reflexive rings with involution. International Journal of Algebra, 12(3), 115–132. DOI: https://doi.org/10.12988/ija.2018.8412

Aburawash, U. A., & Abdulhafed, M. E. (2018b). On reversibility of rings with involution. East-West J. of Mathematics, 20(1), 19–36.

Aburawash, U. A., & Saad, M. (2014). On Biregular, IFP and Quasi-Baer ∗ -Rings. East-West J. of Mathematics Mathematics, 16(2), 182–192.

Aburawash, U. A., & Saad, M. (2016). *-Baer property for rings with involution. Studia Scientiarum Mathematicarum Hungarica, 53(2), 243–255. DOI: https://doi.org/10.1556/012.2016.53.2.1338

Aburawash, U. A., & Saad, M. (2019). Reversible and reflexive properties for rings with involution. Miskolc Mathematical Notes, 20(2), 635–650. DOI: https://doi.org/10.18514/MMN.2019.2676

Başer, M., Harmanci, A., & Kwak, T. K. (2008). Generalized semicommutative rings and their extensions. Bulletin of the Korean Mathematical Society, 45(2), 285–297. DOI: https://doi.org/10.4134/BKMS.2008.45.2.285

Başer, M., Hong, C. Y., & Kwak, T. K. (2009). On extended reversible rings. Algebra Colloquium, 16(1), 37–48. DOI: https://doi.org/10.1142/S1005386709000054

Başer, M., & Kwak, T. K. (2010). Extended semicommutative rings. Algebra Colloquium, 17(2), 257–264. DOI: https://doi.org/10.1142/S1005386710000271

Hong, C. Y., Kwak, T. K., & Rizvi, S. T. (2006). Extensions of generalized armendariz rings. Algebra Colloquium, 13(2), 253–266. DOI: https://doi.org/10.1142/S100538670600023X

Kim, N. K., & Lee, Y. (2003). Extensions of reversible rings. Journal of Pure and Applied Algebra, 185(1–3), 207–223. DOI: https://doi.org/10.1016/S0022-4049(03)00109-9

Martindale, W. S., & 3rd. (1969). Rings with involution and polynomial identities. Journal, of Algebra, 11, 186–194. DOI: https://doi.org/10.1016/0021-8693(69)90053-2

Zhao, L., & Zhu, X. (2012). Extensions of α-reflexive rings. Asian-European Journal of Mathematics, 5(1), 1–10. DOI: https://doi.org/10.1142/S1793557112500131

Downloads

Published

2021-03-31

How to Cite

Abdulhafed, M. E. ., & Abduelhafid, A. E. . (2021). α-Reflexive Rings with Involution. Al-Mukhtar Journal of Sciences, 36(1), 42–56. https://doi.org/10.54172/mjsc.v36i1.22

Issue

Section

Research Articles

Categories

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.