Roughness in Membership Continuous Function

Authors

  • Faraj.A. Abdunani Department of Mathematics, Faculty of Sciences, Ajdabyia University, Libya.
  • Ahmed.A. Shletiet Department of Mathematics, Faculty of Sciences, Ajdabyia University, Libya.

DOI:

https://doi.org/10.54172/mjsc.v36i3.338

Keywords:

Rough set, Lower approximation, Upper approximation, Set valued mapping

Abstract

In this paper, we introduce the new definition of rough membership function using continuous function and we discuss several concepts and properties of rough continuous set value functions as new results on rough continuous function and membership continuous function. Moreover, we extend the definition of rough membership function to topology spaces by substituting an equivalence class by continuous functions and prove some theorems on certain types of set value functions and some more general and fundamental properties of the generalized rough sets. Our result generalized the concept of the set valued function by using rough set theory.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aubin, J.-P., & Frankowska, H. (2009). Set-valued analysis. Modern Birkhäuser Classics: Birkhäuser Boston, Inc., Boston, MA. DOI: https://doi.org/10.1007/978-0-8176-4848-0

Biwas, R., & Nanda, S. (1994). 10. Rough Groups and Rough Subgroups. Bulletin of the Polish Academy of Sciences-Mathematics, 42(3), 251.

Davvaz, B. (2004). Roughness in rings. Information Sciences, 164(1-4), 147-163. DOI: https://doi.org/10.1016/j.ins.2003.10.001

Davvaz, B. (2006). Roughness based on fuzzy ideals. Information Sciences, 176(16), 2417-2437. DOI: https://doi.org/10.1016/j.ins.2005.10.001

Davvaz, B. (2008). A short note on algebraic T-rough sets. Information Sciences, 178(16), 3247-3252. DOI: https://doi.org/10.1016/j.ins.2008.03.014

Lashin, E., Kozae, A., Khadra, A. A., & Medhat, T. (2005). Rough set theory for topological spaces. International Journal of Approximate Reasoning, 40(1-2), 35-43. DOI: https://doi.org/10.1016/j.ijar.2004.11.007

Pawlak, Z. (1982). Rough sets. International journal of computer & information sciences, 11(5), 341-356. DOI: https://doi.org/10.1007/BF01001956

Pawlak, Z., & Skowron, A. (1993). Rough membership functions: a tool for reasoning with uncertainty. Banach Center Publications, 28, 135-150. DOI: https://doi.org/10.4064/-28-1-135-150

Pawlak, Z., & Skowron, A. (2007). Rough sets: some extensions. Information Sciences, 177(1), 28-40. DOI: https://doi.org/10.1016/j.ins.2006.06.006

Sedghi, S., Shobe, N., Lee, D.-W., & Firouzian, S. (2017). Set-valued mapping and Rough Probability. arXiv preprint arXiv:1711.04615. DOI: https://doi.org/10.18576/msl/070109

Vind, K. (1964). Edgeworth-allocations in an exchange economy with many traders. International Economic Review, 5(2), 165-177. DOI: https://doi.org/10.2307/2525560

Published

2021-09-30

How to Cite

Abdunani, F., & Shletiet , A. . (2021). Roughness in Membership Continuous Function. Al-Mukhtar Journal of Sciences, 36(3), 216–222. https://doi.org/10.54172/mjsc.v36i3.338

Issue

Section

Research Articles

Categories

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.