Roughness in Membership Continuous Function


  • Faraj.A. Abdunani Department of Mathematics, Faculty of Sciences, Ajdabyia University, Libya.
  • Ahmed.A. Shletiet Department of Mathematics, Faculty of Sciences, Ajdabyia University, Libya.



Rough set, Lower approximation, Upper approximation, Set valued mapping


In this paper, we introduce the new definition of rough membership function using continuous function and we discuss several concepts and properties of rough continuous set value functions as new results on rough continuous function and membership continuous function. Moreover, we extend the definition of rough membership function to topology spaces by substituting an equivalence class by continuous functions and prove some theorems on certain types of set value functions and some more general and fundamental properties of the generalized rough sets. Our result generalized the concept of the set valued function by using rough set theory.


Download data is not yet available.


Metrics Loading ...


Aubin, J.-P., & Frankowska, H. (2009). Set-valued analysis. Modern Birkhäuser Classics: Birkhäuser Boston, Inc., Boston, MA. DOI:

Biwas, R., & Nanda, S. (1994). 10. Rough Groups and Rough Subgroups. Bulletin of the Polish Academy of Sciences-Mathematics, 42(3), 251.

Davvaz, B. (2004). Roughness in rings. Information Sciences, 164(1-4), 147-163. DOI:

Davvaz, B. (2006). Roughness based on fuzzy ideals. Information Sciences, 176(16), 2417-2437. DOI:

Davvaz, B. (2008). A short note on algebraic T-rough sets. Information Sciences, 178(16), 3247-3252. DOI:

Lashin, E., Kozae, A., Khadra, A. A., & Medhat, T. (2005). Rough set theory for topological spaces. International Journal of Approximate Reasoning, 40(1-2), 35-43. DOI:

Pawlak, Z. (1982). Rough sets. International journal of computer & information sciences, 11(5), 341-356. DOI:

Pawlak, Z., & Skowron, A. (1993). Rough membership functions: a tool for reasoning with uncertainty. Banach Center Publications, 28, 135-150. DOI:

Pawlak, Z., & Skowron, A. (2007). Rough sets: some extensions. Information Sciences, 177(1), 28-40. DOI:

Sedghi, S., Shobe, N., Lee, D.-W., & Firouzian, S. (2017). Set-valued mapping and Rough Probability. arXiv preprint arXiv:1711.04615. DOI:

Vind, K. (1964). Edgeworth-allocations in an exchange economy with many traders. International Economic Review, 5(2), 165-177. DOI:



How to Cite

Abdunani, F., & Shletiet , A. . (2021). Roughness in Membership Continuous Function. Al-Mukhtar Journal of Sciences, 36(3), 216–222.



Research Articles


Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.