Effects of Acacia saligna trees extracts on germination of wheat and barley plants in Al- Jabal Al-Akhdar region
DOI:
https://doi.org/10.54172/mjsc.v36i3.344Keywords:
Acacia saligna, aqueous extracts, Wheat , barleyAbstract
Acacia saligna is an invasive species and abnormally distribution outside its native habitat. This leads to an imbalance in the diversity of local species plants and crops because of marked spread in Al- Jabal Al-Akhdar region. The study was aimed to examine the negative effects of aqueous extracts of Acacia saligna leaves, bark, and seeds at a concentration of (10, 20, 40, and 60%) on the germination of wheat and barley seeds. The results illustrated that there were highly significant differences in germination percentage reduction. Also, the results of the seed extracts showed a greater inhibitory rate compared to the leaves and bark extracts. It was also noted that all extracts with their concentrations led to a reduction in the root and shoot lengths of both plants. The 60% concentration was the most toxic in inhibiting all the studied traits. The wheat plant is the most sensitive to aqueous extracts.
Downloads
References
Abd El Gawad, A., & El-Amier, Y. (2015). Allelopathy and Potential Impact of Invasive Acacia saligna (Labill.) Wendl. on Plant Diversity in the Nile Delta Coast of Egypt. International Journal of Environmental Research, 9(3).
Aguilera, N., Becerra, J., Villaseñor-Parada, C., Lorenzo, P., González, L., & Hernández, V. (2015). Effects and identification of chemical compounds released from the invasive Acacia dealbata Link. Chemistry and Ecology, 31(6), 479-493. DOI: https://doi.org/10.1080/02757540.2015.1050004
Akkari, H., Darghouth, M., & Salem, H. B. (2008). Preliminary investigations of the anti-nematode activity of Acacia cyanophylla Lindl.: Excretion of gastrointestinal nematode eggs in lambs browsing A. cyanophylla with and without PEG or grazing native grass. Small Ruminant Research, 74(1-3), 78-83. DOI: https://doi.org/10.1016/j.smallrumres.2007.03.012
Al-Huqail, A. A., Behiry, S. I., Salem, M. Z., Ali, H. M., Siddiqui, M. H., & Salem, A. Z. (2019). Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules, 24(4), 700. DOI: https://doi.org/10.3390/molecules24040700
Alshareef, B. B., & Alaib, M. A. (2019). Investigation of Allelopathic Potential of Acacia nilotica L. The third international conference on basic sciences and their applications,
Boonmee, S., & Kato-Noguchi, H. (2017). Allelopathic activity of Acacia concinna pod extracts. Emirates Journal of Food and Agriculture, 250-255. DOI: https://doi.org/10.9755/ejfa.2016-07-964
Dafaallah, A. B., Mustafa, W. N., & Hussein, Y. H. (2019). Allelopathic effects of jimsonweed (Datura Stramonium L.) seed on seed germination and seedling growth of some leguminous crops. Int. J. Agric. Innov. Res, 3, 321-331. DOI: https://doi.org/10.29329/ijiaar.2019.194.17
Das, M., Sharma, M., & Sivan, P. (2017). Seed germination and seedling vigor index in Bixa orellana and Clitoria ternatea. Intl. J. Pure App. Biosci, 5, 15-19. DOI: https://doi.org/10.18782/2320-7051.2869
Dhanai, C. S., Lokesh, B., & Charan, S. (2013). Allelopathic effect of different aqueous extract of Acacia nilotica on seed germination and growth of wheat (Triticum aestivum). Indian Forester, 139(11), 999-1002.
El-Lakany, M. (1987). Use of Australian acacias in north Africa. Australian Acacias in developing countries, 116-117.
El-Toumy, S. A., Salib, J., Mohamed, W., & Morsy, F. (2010). Phytochemical and antimicrobial studies on Acacia saligna leaves. Egypt J Chem, 53, 705-717. DOI: https://doi.org/10.21608/ejchem.2010.1259
El Ayeb‐Zakhama, A., Sakka‐Rouis, L., Bergaoui, A., Flamini, G., Ben Jannet, H., & Harzallah‐Skhiri, F. (2015). Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. cultivated in Tunisia. Chemistry & biodiversity, 12(4), 615-626. DOI: https://doi.org/10.1002/cbdv.201400184
Ganatsas, P., Tsakaldimi, M., & Thanos, C. (2008). Seed and cone diversity and seed germination of Pinus pinea in Strofylia Site of the Natura 2000 Network. Biodiversity and Conservation, 17(10), 2427-2439. DOI: https://doi.org/10.1007/s10531-008-9390-8
Hassan, M. M., & Hassan, F. A. (2018). Effect of Acacai seyal Del tree age and distance on sorghum (sorghum bicolor) germination and mortality. Effect of Acacai seyal Del tree age and distance on sorghum (sorghum bicolor) germination and mortality, 9(1), 6-6. DOI: https://doi.org/10.9734/ACRI/2017/38133
Hisashi, K.-N. (2020). Allelopathic potential of Acacia pennata (L.) Willd. leaf extracts against the seedling growth of six test plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1534-1542. DOI: https://doi.org/10.15835/nbha48312022
Hussain, M. I., El-Sheikh, M. A., & Reigosa, M. J. (2020). Allelopathic Potential of Aqueous Extract from Acacia melanoxylon R. Br. on Lactuca sativa. Plants, 9(9), 1228. DOI: https://doi.org/10.3390/plants9091228
Kamel, M., & Hammad, S. A. (2015). The Allelopathic Effect of the Exotic Tree Acacia saligna on the Germination of Wheat and Canola. Ecologia Balkanica, 7(1).
Lorenzo, P., González, L., & Reigosa, M. J. (2010). The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Annals of Forest Science, 67(1), 101. DOI: https://doi.org/10.1051/forest/2009082
Lozano, V., Marzialetti, F., Carranza, M. L., Chapman, D., Branquart, E., Dološ, K., Große-Stoltenberg, A., Fiori, M., Capece, P., & Brundu, G. (2020). Modelling Acacia saligna invasion in a large Mediterranean island using PAB factors: A tool for implementing the European legislation on invasive species. Ecological Indicators, 116, 106516. DOI: https://doi.org/10.1016/j.ecolind.2020.106516
Masoud, M., & Abugarsa, M. A. O. S. A. (2018). Allelopathic Effects of Aqueous Extract from Satureja thymbra L. on Seed Germination and Seedling Growth of Pinus halepensis Mill. and Ceratonia siliqua L. Libyan Journal of Science & Technology, 7(1), 17-20. DOI: https://doi.org/10.37376/1571-000-052-009
Nidal, D., Khateeb, W. A., Muhaidat, R., Al Udatt, M., & Irshiad91, L. (2011). The effect of exotic Acacia saligna tree on plant biodiversity of Northern Jordan.
Noumi, Z., & Chaieb, M. (2011). Allelopathic effects of acacia tortilis (forssk.) Hayne subsp. Raddiana (savi) brenan in north africa. Pak. J. Bot, 43(6), 2801-2805.
Nsikani, M., van Wilgen, B., Bacher, S., & Gaertner, M. (2018). Re-establishment of Protea repens after clearing invasive Acacia saligna: Consequences of soil legacy effects and a native nitrophilic weedy species. South African Journal of Botany, 116, 103-109. DOI: https://doi.org/10.1016/j.sajb.2018.02.396
Othman, B., Haddad, D., & Tabbache, S. (2018). Allelopathic Effects of Sorghum Halepense (L.) Pers. and Avena Sterilis L. Water Extracts on Early Seedling Growth of Portulacca Oleracea L. and Medicago Sativa L. DOI: https://doi.org/10.14445/23939117/IJMS-V5I10P103
Oyun, M. (2006). Allelopathic potentialities of Gliricidia sepium and Acacia auriculiformis on the germination and seedling vigour of maize (Zea mays L.). American Journal of Agricultural and Biological Science, 1(3), 44-47. DOI: https://doi.org/10.3844/ajabssp.2006.44.47
Salih, S. M. A., A. A Salih, S. M. (2020). In vitro treatment of Acacia saligna (Labill) trees seeds dormancy. Journal BAYAN, 7, 43-54.
Suhaili, M. F., Metali, F., Sukri, R. S., & Taha, H. (2019). Allelopathic potential of invasive Acacia holosericea on germination and growth of selected paddy varieties. Research on Crops, 20(1), 236-242. DOI: https://doi.org/10.31830/2348-7542.2019.034
Vijayan, V. (2015). Evaluation for allelopathic impact of Acacia auriculiformis A. Cunn. ex Benth on Seed germination and Seedling growth of Rice (Oryza sativa L), a widely cultivated Indian crop species. Research Journal of Agriculture and Forestry Sciences ISSN, 2320, 6063.
Yousif, M. A. I., Wang, Y. R., & Dali, C. (2020). Seed dormancy overcoming and seed coat structure change in Leucaena leucocephala and Acacia nilotica. Forest Science and Technology, 16(1), 18-25. DOI: https://doi.org/10.1080/21580103.2019.1700832
Downloads
Published
How to Cite
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of the articles Published by Almukhtar Journal of Science (MJSc) is retained by the author(s), who grant MJSc a license to publish the article. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors and cite MJSc as original publisher. Also they accept the article remains published by MJSc website (except in occasion of a retraction of the article).