Biochemical study on the amino acid content of storage proteins of stone seed (prunus armeniaca L) during break the dormancy and germination


  • Mohammed Ali Kassem Department of chemistry, faculty of Science, Omar Elmokhtar universty, El-Bieda, Libya.



amino acid , stone seed, dormancy and germination


In this study the amino acid content of storage proteins of stone seeds (prunus armeniaca L) and protein mobilization during germination and break the dormancy of seeds were investigated. The seeds washed air dried, hard pits (endocarp) were removed and the seeds were subjected to the following treatments:

  1. Soaking in gebberellic acid (GA3) solution (1000 ppm) for 24 hour.
  2. Soaking in cycocel (ccc) solution (50 ppm) for 24 hrs.
  3. Soaking in thiourea solution (0.1%) for 24 hrs.
  4. Soaking in potassium iodide (0.1%) for 24 hrs.
  5. Cold storage (stratification) at 5 ºCfor four weeks in moist sand.
  6. Soaking in water for 24 hrs.

The germination percentage, soluble amino acid content of seedlings (in different stages), total phenolic compounds aand Arginase activity were determined. The storage proteins are breakdown and the soluble amino acid contents of seedlings were increased during germination so amino acid utilization in seeds during germination and early seedling growth. Also, this investigation reports an attempts that have been made to remove dormancy and induce germination of seeds.


Download data is not yet available.


Barton, L.V. (1965a): Seed dormancy: General servey of dormancy types in seeds, and dormancy imposed by external agents. Encye. Plant Physiol., 15(2): 699-720. DOI:

Bidwell, R.G.S. (1974): Plant physiology. MacMillan Published Co., Inc., New york.

Blauth, O.J.; Charezinski, M. and Berbec, H. (1963): A new rapid method for determining tryptophan. Anal. Biochem., 6, 29. DOI:

Dahshan, I.O.; El-Shazly, A.S. and Abou Rawash, M. (1987): effect of seed coat removal, GA3 and cold stratification on germination of apricot seeds and subsequent seedling growth. Annals Agric. Sci., Fac. Agric., Ain Shams Unive., Cairo, Egypt, 32(3): 1625-1635.

Davies, J. M. (1997) : Adv, Bot. Res. 25, 339-363. DOI:

Davis, H.V; Chapman, J.M. (1980): The control of food mobilization in seeds of cucumis sativusl planta 149: 288-291. DOI:

Fadle, M.S.; Baz, A.G.I.O. and Tayel, S. (1978): The effect of low temperature on the dormancy of “Favoumi” apricot seeds and on activities of native inhibitors existing in their seed coats. Egypt. J. Hort., 5(2): 105-114.

Femenia, A.; Rossello, C.; Mulet, A. and Canellas, J. (1995): Chemical composition of bitter and sweet apricot kernels J. Agric. Food Chem., 43: 356-361. DOI:

Friedman, M. (1996): Nutritional value of proteins from different food sources. J. Agric. Food Chem., 44: 6-29. DOI:

Frisby, J.W., and Scluyler, D.S. (1993): Chilling of endodormant peach propagules : seed germination and emergence. J. Amer. Soc. Hort. Sci., 118 (2):248-252. DOI:

Gifford, D. J. Greenwood, J.S., and Bewley, J. D. (1982): Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communisl plant physiology 69: 1471-1478. DOI:

Hassan, M.Sh (1991): Evaluation of apricot kernel as a new protein source. Minia J. Agric. Res. Dev., 13: 1472-1483.

Hill, J. And Phyllip, L. H. (1997) : FEBS Lett. 409, 357-360. DOI:

Jacobsen, J.V., Gubler, F., and chandler, P. M. (1995): Gibberellin action in germinated cereal grains. Kluwer Achademic Publishers, Dordrecht, The Netherlands, pp 246-271. DOI:

Loening, U.E. (1967): Fractionation of high molecular weight ribonucleic acid by poly acrylamide gel electrophoresis. Biochem. J., 102: 251-257. DOI:

Lowry, O.J.; Rosenbrough, N.V.; Farr, A. L. and Randall, R. J. (1951): Protein measurement with the folin phenol reagent. J. Biol. Chem., 193:265-275. DOI:

Micallef, B.J., Shelp, B.J. (1989a): Arginine metabolism in developimg soybean cotyledons. Plant Physiology 90:631-634. DOI:

Mutu, A. And Gal, S. (1999) : Physiol. Plant. 105, 569-576. DOI:

Price, M.L. and Bulter, L.G. (1977): Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain J. Agric. Food Chem. 25: 1268-1273. DOI:

Price, M.L.; Van Scayoc, S. and Bulter, L.G. (1978): A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem., 26: 1214-1218. DOI:

Saalbach, L., Muntz, K. And Nietsen, N. C. (1998) : Plant Cell, 10, 343-357. DOI:

Stokes, P. (1965): Temperature and seed dormancy. Encyc. Plant Physiol., 15:746-803.

Vegis, A. (1964b) : Dormancy in higher plants Ann. Rev. plant physiol., 15: 185-224. DOI:



How to Cite

Ali Kassem, M. (2005). Biochemical study on the amino acid content of storage proteins of stone seed (prunus armeniaca L) during break the dormancy and germination. Al-Mukhtar Journal of Sciences, 12(1), 58–71.



Research Articles