Identification of Potential Natural Bioactive Compounds from Glycyrrhiza glabra as Sars-CoV-2 Main Protease (MPRO) Inhibitors: In-Silico Approach

Authors

  • Ashraf A. A. Abdusalam Department of Pharmaceutical Chemistry, Faculty of Health Sciences, Sirte University, Libya
  • Gazala M. Ben-Hander Department of Chemistry, Faculty of Sciences, Sirte University, Libya

DOI:

https://doi.org/10.54172/mjsc.v37i2.679

Keywords:

Virtual Screening, Docking, Glycyrrhiza glabra, Covid-19, SARS-CoV-2, 3CL protease

Abstract

The SARS-CoV-2 virus caused the COVID-19 pandemic declared in early 2020, generating a global health emergency. So far, no approved drugs or vaccines are available. Therefore, there is an urgent need to explore and develop effective new therapeutics against SARS-CoV-2. In addition, the main protease (Mpro) of the SARS-CoV-2 virus is considered essential in the virus replication propagation and considered a drug discovery target. Consequently, plant-derived compounds are an important and valuable source for novel drugs. This study reports molecular docking-based virtual screening (VS) of 20 compounds identified from Glycyrrhiza glabra to search for potent compounds against 3CL proteases (3CLpro). The screening results revealed that the identified compounds Semilicoisoflavone B, Licoflavone B, and Licocoumarin A exhibited low free energy of binding (FEB) values of 10.91, −10.29, and −10.21 kcal/mole for Autodock 4.2 and −9.81, −9.77, and −9.60 kcal/mole, for AutoDockVina, respectively. The obtained results of FEB in this study were better than the coordinated ligand N3, which was -7.4 kcal/mole. The three potential compounds showed different and stable interactions with the essential amino acids, especially the catalytic dyad (Cys145-His41) in the binding pocket of the 3CLpro. Three potential inhibitors were successfully identified from Glycyrrhiza glabra using molecular docking and virtual screening; these compounds obeyed the Lipinski rule of 5 with a little violation and showed low FEB and good interactions with the 3CLpro. These identified compounds may serve as potential leads that help in developing therapeutic agents against the SARS-CoV-2. Further research is recommended (in vitro and in vivo) to verify the above findings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdusalam, A. A. A., & Murugaiyah, V. (2020). Identification of potential inhibitors of 3CL protease of SARS-CoV-2 from ZINC database by molecular docking-based virtual screening. Frontiers in molecular biosciences, 7, 419. DOI: https://doi.org/10.3389/fmolb.2020.603037

Ahmed Ali Abdusalam, A., & Vikneswaran, M. (2020). Novel Acetylcholinesterase Inhibitors Identified from ZINC Database Using Docking‐Based Virtual Screening for Alzheimer's Disease. ChemistrySelect, 5(12), 3593-3599. DOI: https://doi.org/10.1002/slct.201904177

Asrani, P., Afzal Hussain, K. N., AlAjmi, M. F., Amir, S., Sohal, S. S., & Hassan, M. I. (2021). Guidelines and safety considerations in the laboratory diagnosis of SARS-CoV-2 infection: a prerequisite study for health professionals. Risk management and healthcare policy, 14, 379. DOI: https://doi.org/10.2147/RMHP.S284473

Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): the single global macromolecular structure archive. Protein Crystallography, 627-641. DOI: https://doi.org/10.1007/978-1-4939-7000-1_26

Chan, J., Azhar, E., Hui, D., & Yuen, K. (2016). Coronaviruses: drug discovery and therapeutic options. Nat Rev Drug Discov, 15(5), 327-347. DOI: https://doi.org/10.1038/nrd.2015.37

Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging microbes & infections, 9(1), 221-236. DOI: https://doi.org/10.1080/22221751.2020.1719902

Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The lancet, 361(9374), 2045-2046. DOI: https://doi.org/10.1016/S0140-6736(03)13615-X

De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523-534. DOI: https://doi.org/10.1038/nrmicro.2016.81

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature protocols, 11(5), 905-919. DOI: https://doi.org/10.1038/nprot.2016.051

Gills, J. J., LoPiccolo, J., Tsurutani, J., Shoemaker, R. H., Best, C. J., Abu-Asab, M. S., Borojerdi, J., Warfel, N. A., Gardner, E. R., & Danish, M. (2007). Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clinical Cancer Research, 13(17), 5183-5194. DOI: https://doi.org/10.1158/1078-0432.CCR-07-0161

Hariyono, P., Patramurti, C., Candrasari, D. S., & Hariono, M. (2021). An integrated virtual screening of compounds from Carica papaya leaves against multiple protein targets of SARS-Coronavirus-2. Results in chemistry, 3, 100113. DOI: https://doi.org/10.1016/j.rechem.2021.100113

Jacq, N., Breton, V., Chen, H.-Y., Ho, L.-Y., Hofmann, M., Kasam, V., Lee, H.-C., Legré, Y., Lin, S. C., & Maaß, A. (2007). Virtual screening on large scale grids. Parallel Computing, 33(4-5), 289-301. DOI: https://doi.org/10.1016/j.parco.2007.02.010

Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery: ACS Publications. DOI: https://doi.org/10.1021/ci200227u

Lavecchia, A., & Di Giovanni, C. (2013). Virtual screening strategies in drug discovery: a critical review. Current medicinal chemistry, 20(23), 2839-2860. DOI: https://doi.org/10.2174/09298673113209990001

Makeneni, S., Thieker, D. F., & Woods, R. J. (2018). Applying pose clustering and MD simulations to eliminate false positives in molecular docking. Journal of chemical information and modeling, 58(3), 605-614. DOI: https://doi.org/10.1021/acs.jcim.7b00588

Marcelin, A.-G., Lamotte, C., Delaugerre, C., Ktorza, N., Ait Mohand, H., Cacace, R., Bonmarchand, M., Wirden, M., Simon, A., & Bossi, P. (2003). Genotypic inhibitory quotient as predictor of virological response to ritonavir-amprenavir in human immunodeficiency virus type 1 protease inhibitor-experienced patients. Antimicrobial agents and chemotherapy, 47(2), 594-600. DOI: https://doi.org/10.1128/AAC.47.2.594-600.2003

McInnes, C. (2007). Virtual screening strategies in drug discovery. Current opinion in chemical biology, 11(5), 494-502. DOI: https://doi.org/10.1016/j.cbpa.2007.08.033

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639-1662. DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus, 12(3). DOI: https://doi.org/10.7759/cureus.7423

Pastorino, G., Cornara, L., Soares, S., Rodrigues, F., & Oliveira, M. B. P. (2018). Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy research, 32(12), 2323-2339. DOI: https://doi.org/10.1002/ptr.6178

Phan, T. (2020). Novel coronavirus: From discovery to clinical diagnostics. Infection, Genetics and Evolution, 79, 104211. DOI: https://doi.org/10.1016/j.meegid.2020.104211

Pompei, R., Pani, A., Flore, O., Marcialis, M., & Loddo, B. (1980). Antiviral activity of glycyrrhizic acid. Experientia, 36(3), 304-304. DOI: https://doi.org/10.1007/BF01952290

Sáez-Llorens, X., Violari, A., Deetz, C. O., Rode, R. A., Gomez, P., Handelsman, E., Pelton, S., Ramilo, O., Cahn, P., & Chadwick, E. (2003). Forty-eight-week evaluation of lopinavir/ritonavir, a new protease inhibitor, in human immunodeficiency virus-infected children. The Pediatric infectious disease journal, 22(3), 216-223. DOI: https://doi.org/10.1097/01.inf.0000055061.97567.34

Sharma, V., Katiyar, A., & Agrawal, R. (2018). Glycyrrhiza glabra: chemistry and pharmacological activity. Sweeteners, 87. DOI: https://doi.org/10.1007/978-3-319-27027-2_21

Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological reviews, 66(1), 334-395. DOI: https://doi.org/10.1124/pr.112.007336

Smith, D. M., Daniel, K. G., Wang, Z., Guida, W. C., Chan, T. H., & Dou, Q. P. (2004). Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design. Proteins: Structure, Function, and Bioinformatics, 54(1), 58-70. DOI: https://doi.org/10.1002/prot.10504

Stoermer, M. (2020). Homology models of coronavirus 3CLpro protease. DOI: https://doi.org/10.26434/chemrxiv.11637294.v2

Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461. DOI: https://doi.org/10.1002/jcc.21334

Wang, L., Yang, R., Yuan, B., Liu, Y., & Liu, C. (2015). The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta pharmaceutica sinica B, 5(4), 310-315. DOI: https://doi.org/10.1016/j.apsb.2015.05.005

Yang, X., Yu, Y., Xu, J., Shu, H., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., & Yu, T. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5), 475-481. DOI: https://doi.org/10.1016/S2213-2600(20)30079-5

Zehra, Z., Luthra, M., Siddiqui, S. M., Shamsi, A., Gaur, N. A., & Islam, A. (2020). Corona virus versus existence of human on the earth: A computational and biophysical approach. International Journal of Biological Macromolecules, 161, 271-281. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.007

Zoete, V., Grosdidier, A., & Michielin, O. (2009). Docking, virtual high throughput screening and in silico fragment‐based drug design. Journal of cellular and molecular medicine, 13(2), 238-248. DOI: https://doi.org/10.1111/j.1582-4934.2008.00665.x

Downloads

Published

2022-06-30

How to Cite

Abdusalam, A. A. A., & Ben-Hander, G. M. (2022). Identification of Potential Natural Bioactive Compounds from Glycyrrhiza glabra as Sars-CoV-2 Main Protease (MPRO) Inhibitors: In-Silico Approach. Al-Mukhtar Journal of Sciences, 37(2), 150–161. https://doi.org/10.54172/mjsc.v37i2.679

Issue

Section

Research Articles

Categories