Effects of Glomus intraradices on the drought resistance and growth of corn plant (Zea mays L.)

Authors

  • A. S. Banni Botany Department, Faculty of Science, Benghazi University, Al-Marj, Libya
  • Salah Hajomer Botany Department, Faculty of Science, Benghazi University, Al-Marj, Libya
  • Y. A. Tayeb Botany Department, Faculty of Science, Benghazi University, Al-Marj, Libya
  • Elsharif Hafez A.A Elsharif Hafez A.A Botany Department, Faculty of Science, Benghazi University, Al-Marj, Libya

DOI:

https://doi.org/10.54172/mjsc.v32i1.94

Keywords:

G. intraradices, corn plant (Zea mays L.), drought resistance

Abstract

A pot experiment was carried out at the greenhouse of Faculty of Agriculture (Saba bacha), Alexandria University. The experiment was conducted to investigate the role of Glomus intraradices fungi in the effects on the growth and water requirement of pot-grown corn (Zea mays L.). Four water regimes (20%, 30%, 40% and 50% of the available soil water content) were conducted. The Arbuscular Mycorrhizal Fungi AMF inoculation could significantly increase plant growth (including plant height, leaf area, and fresh and dry mass), enhance relative leaf water content, transpiration rates and stomatal conductance, and improve plant drought tolerance. The water consumption of the mycorrhizal plants producing 1 g of dry matter was 20%–35% of water content conditions. These findings indicate that the mycorrhizae enhanced the water utilization efficiency.

Downloads

Download data is not yet available.

References

ACSRT(Academy of Scientific Research and Technology) (1999).The national assault for uplifting yield of zea maize .(In Arabic).

Baker,N.(2010).Photosynthesis and the Environ -ment .Kluwer Academic.Netherland.

Dutra, P., Abad M., Almela V., and Agusti M. (1996). Auxin interaction with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith improves vegetative growth of two citrus rootstocks. Scientia Horticulturae 66(1):77-83. DOI: https://doi.org/10.1016/0304-4238(96)00887-4

Giovannetti, M., and Mosse B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New phytologist 84(3):489-500. DOI: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Graham, J., and Syvertsen J. (1984). Influence of vesicular–arbuscular mycorrhiza on the hydraulic conductivity of roots of two citrus rootstocks. New phytologist 97(2):277-284. DOI: https://doi.org/10.1111/j.1469-8137.1984.tb04132.x

Kaya, C., Higgs D., Kirnak H., and Tas I. (2003). Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant and soil 253(2):287-292. DOI: https://doi.org/10.1023/A:1024843419670

Khan, I. A., Ahmad S., and Mirza S. (2003). Yield and water use efficiency (WUE) of Avena sativa as influenced by vesicular arbuscular mycorrhizae (VAM). Asian Journal of Plant Sciences. DOI: https://doi.org/10.3923/ajps.2003.371.373

Liu, R. (1989a). Effects of VA mycorrhizas on the water status of Malus hupehensis. Journal of Laiyang Agricultural College 6(1):34-39.

Liu, R. (1989b). Effects of vesicular-arbuscular mycorrhizas and phosphorus on water status and growth of apple. Journal of plant nutrition (USA).

Liu, R., and Luo X. (1988). Effects of vesiculararbuscular mycorrhizas on the growth, mineral nutrition and water relations of cherry (Cerasus psedocerasus). J. Lai-Yang Agri. College 5(6-13.

Lu, J., Liu M., Mao Y., and Shen L. (2007). Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus Hu) seedlings. Frontiers of Agriculture in China 1(4):468-471. DOI: https://doi.org/10.1007/s11703-007-0077-9

Murakami-Mizukami, Y., Yamamoto Y., and Yamaki S. (1991). Analyses of indole acetic acid and absclsic acid contents in nodules of soybean plants bearing VA mycorrhizas. Soil Science and Plant Nutrition 37(2):291-298. DOI: https://doi.org/10.1080/00380768.1991.10415039

Page, A., and Page A. (1982). Methods of soil analysis: chemical and microbiological proerpteis. Amen Society of Agronomy. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed

Phillips, J. M., and Hayman D. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society 55(1):158IN116-161IN118. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3

Pinior, A., Grunewaldt-Stöcker G., von Alten H., and Strasser R. J. (2005). Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15(8):596. DOI: https://doi.org/10.1007/s00572-005-0001-1

Rubin, R. L., van Groenigen K. J., and Hungate B. A. (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and soil:1-15. DOI: https://doi.org/10.1007/s11104-017-3199-8

Snedecor, G., and Cochran W. (1972). Statistical method 6th edition Iowa State University Press. America:243-246.

Wu, Q., Xia R., and Hu Z. (2006). Effect of arbuscular mycorrhiza on the drought tolerance of Poncirus trifoliata seedlings. Frontiers of forestry in China 1(1):100-104. DOI: https://doi.org/10.1007/s11461-005-0007-z

Downloads

Published

2017-06-30

How to Cite

Banni, A. S. ., Hajomer, S. ., Tayeb, Y. A. ., & Elsharif Hafez A.A, E. H. A. (2017). Effects of Glomus intraradices on the drought resistance and growth of corn plant (Zea mays L.). Al-Mukhtar Journal of Sciences, 32(1), 63–69. https://doi.org/10.54172/mjsc.v32i1.94

Issue

Section

Research Articles

Categories