Effects of streptomyces rochi Biosurfactants on Pathogenic Staphylococcus aureus and Pseudomonas aeruginosa


  • Nadia H. Al-Healy Department of Techniques, Faculty of Medical Laboratory, Al-Hadba University, Iraq
  • Essra Gh. Al-Sammak Department of Biology




Streptomyces rochei, Antimicrobial, Biosurfactant, GC-Mass


Fifty soil samples were collected from soils contaminated and uncontaminated with hydrocarbons. Six isolates belonging to Streptomyces rochei were diagnosed, 8% from contaminated soil and 6% from uncontaminated soil. Isolates were diagnosed depending on the study of 16s rDNA compared to standard isolates within the National Center for Biotechnology Information site. 28 smears of wounds and 12 smears of burns were collected, including Staphylococcus aureus isolates (35.7%) and Pseudomonas aeruginosa (16.6%). The isolates of Staphylococcus aureus and Pseudomonas aeruginosa showed multiple resistance to antibiotics, Oxacillin, Erythromycin, Nalidixic acid, and Tetracycline. Isolate Streptomyces rochei 19 showed the ability to produce biosurfactants that have antagonistic properties against Staphylococcus aureus and Pseudomonas aeruginosa. In addition, the biosurfactant production from Streptomyces rochei 19 were non-toxic to the potential growth of Brassica oleracea seeds at 1.5 and 50 mg/cm3. The biosurfactant was diagnosed as Lipopeptide using thin layer chromatography and GC-Mass technique.


Download data is not yet available.


Abouseoud, M., Maachi, R., & Amrane, A. (2007). Biosurfactant production from olive oil by Pseudomonas fluorescens. Comm. Curr. Res. Educ. Top. Trends Appl. Microbiol, 1, 340-347.

Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., & Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 223(1-3), 143-151. DOI: https://doi.org/10.1016/j.desal.2007.01.198

Ainon, H., Noramiza, S., & Shahidan, R. (2013). Screening and optimization of biosurfactant production by the hydrocarbon-degrading bacteria. Sains Malaysiana, 42(5), 615-623.

Akpaka, P. E., Roberts, R., & Monecke, S. (2017). Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. Journal of infection and public health, 10(3), 316-323. DOI: https://doi.org/10.1016/j.jiph.2016.05.010

Al-Safar, S. E., & E.G.AL-Sammak. (2014). Biochemical and genotyping comparative between native strains of Pseudomonas aeruginosa with identical standard strains. Inter. J.Scientific and Technol, 9, 1-11.

Alsammak, E. G., & Alhyaly, N. H. (2019). Molecular Diagnosis of Streptomyces rochei Isolates and Study their Ability to Produce Antibiotics Against Multidrug Resistance Staphylococcus aureus and Pseudomonas aeruginosa. College Of Basic Education Researches Journal, 15(4).

Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., & van Wezel, G. P. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1-43. DOI: https://doi.org/10.1128/MMBR.00019-15

Bezza, F. A., & Chirwa, E. M. N. (2015). Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochemical Engineering Journal, 101, 168-178. DOI: https://doi.org/10.1016/j.bej.2015.05.007

Bodour, A. A., & Maier, R. M. (2003). Biosurfactants: types, screening methods, and applications. Encyclopedia of environmental microbiology. DOI: https://doi.org/10.1002/0471263397.env250

Carrillo, P., Mardaraz, C., Pitta-Alvarez, S., & Giulietti, A. (1996). Isolation and selection of biosurfactant-producing bacteria. World Journal of Microbiology and Biotechnology, 12(1), 82-84. DOI: https://doi.org/10.1007/BF00327807

Chakraborty, S., Khopade, A., Kokare, C., Mahadik, K., & Chopade, B. (2009). Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 17-23. DOI: https://doi.org/10.1016/j.molcatb.2008.10.011

Chen, C., Ye, Y., Wang, R., Zhang, Y., Wu, C., Debnath, S. C., Ma, Z., Wang, J., & Wu, M. (2018). Streptomyces nigra sp. nov. is a novel actinobacterium isolated from mangrove soil and exerts a potent antitumor activity in vitro. Frontiers in microbiology, 9, 1587. DOI: https://doi.org/10.3389/fmicb.2018.01587

Cornea, C. P., Roming, F. I., Sicuia, O. A., Voaideș, C., Zamfir, M., & Grosu-Tudor, S.-S. (2016). Biosurfactant production by Lactobacillus spp. strains isolated from Romanian traditional fermented food products. Rom Biotechnol Lett, 21(2).

Cotarlet, M., Bahrim, G., Negoita, T., & Stougaard, P. (2010). Comparative study for establishing the efficiency of some methods for chromosomal DNA extraction from cold adapted streptomycetes. Romanian Biotechnological Letters, 15(4), 5483.

Deepa, R., Vidhya, A., & Arunadevi, S. (2015). Screening of bioemulsifier and biosurfactant producing streptomyces from different soil samples and testing its heavy metal resistance activity. International Journal of Current Microbiology and Applied Sciences, 4(5), 687-694.

G Al-Sammak, E., D Ahmed, K., & M Faisal, R. (2009). Determining the location of some Antibiotic-Coding Genes in Streptomyces spp. Rafidain Journal of Science, 20(2), 11-22. DOI: https://doi.org/10.33899/rjs.2009.40163

Gebreyohannes, G., Moges, F., Sahile, S., & Raja, N. (2013). Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian pacific journal of Tropical biomedicine, 3(6), 426-435. DOI: https://doi.org/10.1016/S2221-1691(13)60092-1

Geetha, S., Banat, I. M., & Joshi, S. J. (2018). Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology, 14, 23-32. DOI: https://doi.org/10.1016/j.bcab.2018.01.010

Gudiña, E. J., Teixeira, J. A., & Rodrigues, L. R. (2016). Biosurfactants produced by marine microorganisms with therapeutic applications. Marine drugs, 14(2), 38. DOI: https://doi.org/10.3390/md14020038

Hismiogullari, S., Elyurek, E., Hismiogullari, A., Sahin, F., Basalan, M., & Yenice, S. (2008). Effects of caproic and caprylic acids on microbial growth and cytotoxicity.

Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (1994). Bergey's Manual of determinate bacteriology.

Juttner, F., & Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and environmental microbiology, 73(14), 4395-4406. DOI: https://doi.org/10.1128/AEM.02250-06

Kaczorek, E., Cieślak, K., Bielicka-Daszkiewicz, K., & Olszanowski, A. (2013). The influence of rhamnolipids on aliphatic fractions of diesel oil biodegradation by microorganism combinations. Indian journal of microbiology, 53(1), 84-91. DOI: https://doi.org/10.1007/s12088-012-0323-6

Khopade, A., Ren, B., Liu, X.-Y., Mahadik, K., Zhang, L., & Kokare, C. (2012). Production and characterization of biosurfactant from marine Streptomyces species B3. Journal of colloid and interface science, 367(1), 311-318. DOI: https://doi.org/10.1016/j.jcis.2011.11.009

Kiran, G. S., Priyadharsini, S., Sajayan, A., Priyadharsini, G. B., Poulose, N., & Selvin, J. (2017). Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Frontiers in microbiology, 8, 1138. DOI: https://doi.org/10.3389/fmicb.2017.01138

Kokare, C., Kadam, S., Mahadik, K., & Chopade, B. (2007). Studies on bioemulsifier production from marine Streptomyces sp. S1.

Lane, D. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, 115-175.

Lata, K. (2015). Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian Journal of Pharmaceutical and Clinical Research, 244-246.

Law, J. W.-F., Ser, H.-L., Ab Mutalib, N.-S., Saokaew, S., Duangjai, A., Khan, T. M., Chan, K.-G., Goh, B.-H., & Lee, L.-H. (2019). Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Scientific reports, 9(1), 1-18. DOI: https://doi.org/10.1038/s41598-019-39592-6

Lee, H.-J., & Whang, K.-S. (2014). Streptomycesgraminifolii sp. nov., isolated from bamboo (Sasa borealis) litter. International journal of systematic and evolutionary microbiology, 64(Pt_8), 2517-2521. DOI: https://doi.org/10.1099/ijs.0.056895-0

Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical microbiology reviews, 22(4), 582-610. DOI: https://doi.org/10.1128/CMR.00040-09

Loganathan Karthik, G. K., & Rao, K. V. B. (2010). Comparison Of Methods And Screening Of Biosurfactant Producing Marine Actinobacteria Isolated From Nicobar Marine Sediment.

Madhaiyan, M., Poonguzhali, S., Saravanan, V. S., Duraipandiyan, V., Al-Dhabi, N. A., Pragatheswari, D., Santhanakrishnan, P., Kim, S.-J., Weon, H.-Y., & Kwon, S.-W. (2016). Streptomyces pini sp. nov., an actinomycete isolated from phylloplane of pine (Pinus sylvestris L.) needle-like leaves. International journal of systematic and evolutionary microbiology, 66(10), 4204-4210. DOI: https://doi.org/10.1099/ijsem.0.001336

Maleki, H., Dehnad, A., Hanifian, S., & Khani, S. (2013). Isolation and molecular identification of Streptomyces spp. with antibacterial activity from northwest of Iran. BioImpacts: BI, 3(3), 129.

Maniyar, J. P., Doshi, D. V., Bhuyan, S. S., & Mujumdar, S. S. (2011). Bioemulsifier production by Streptomyces sp. S22 isolated from garden soil.

Murray, P., Baron, E., Jorgensen, J., Pfaller, M., & Yolken, R. (2003). American Society for Microbiology. Manual of Clinical Microbiology ASM Press, Washington, DC.

Nahid, R., Ali, S., & Farshid, S. (2012). Antimicrobial activity and constituents of the hexane extracts from leaf and stem of Origanum vulgare L. ssp. Viride (Boiss.) Hayek. growing wild in Northwest Iran. Journal of Medicinal Plants Research, 6(13), 2681-2685. DOI: https://doi.org/10.5897/JMPR11.1768

Nitschke, M., & Silva, S. S. e. (2018). Recent food applications of microbial surfactants. Critical reviews in food science and nutrition, 58(4), 631-638. DOI: https://doi.org/10.1080/10408398.2016.1208635

Peres, N., Cursino-Santos, J., Rossi, A., & Martinez-Rossi, N. (2011). In vitro susceptibility to antimycotic drug undecanoic acid, a medium-chain fatty acid, is nutrient-dependent in the dermatophyte Trichophyton rubrum. World Journal of Microbiology and Biotechnology, 27(7), 1719-1723. DOI: https://doi.org/10.1007/s11274-010-0613-2

Plaza, G. A., Zjawiony, I., & Banat, I. (2006). Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. Journal of Petroleum Science and Engineering, 50(1), 71-77. DOI: https://doi.org/10.1016/j.petrol.2005.10.005

Prescott, L. M., Willey, J. M., Sherwood, L. M., & Woolverton, C. J. (2018). Microbiologie. De Boeck Supérieur.

Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: Ch. 15. Expression of cloned genes in Escherichia coli (Vol. 3). Cold Spring Harbor Laboratory Press.

Shubhrasekhar, C., Supriya, M., Karthik, L., Gaurav, K., & Bhaskara Rao, K. (2013). Isolation, characterization and application of biosurfactant produced by marine Actinobacteria isolated from saltpan soil from costal area of Andhra Pradesh, India. Res J Biotechnol, 8, 1-8.

Simor, A. E., Goodfellow, J., Louie, L., & Louie, M. (2001). Evaluation of a new medium, oxacillin resistance screening agar base, for the detection of methicillin-resistant Staphylococcus aureus from clinical specimens. Journal of clinical microbiology, 39(9), 3422-3422. DOI: https://doi.org/10.1128/JCM.39.9.3422.2001

Swadi, W. A., Ghadban, A. K., & Majeed, G. H. (2013). Studying of optimal conditions for production of biosurfactant (rhamnolipids) by the local isolate P.a. 28 of Pseudomonas aeruginosa. Journal of Basrah Research (Sci.)(39), 60 - 72.

Symmank, H., Franke, P., Saenger, W., & Bernhard, F. (2002). Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein engineering, 15(11), 913-921. DOI: https://doi.org/10.1093/protein/15.11.913

Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030-11035. DOI: https://doi.org/10.1073/pnas.0404206101

Thavasi, R., Subramanyam Nambaru, V., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2011). Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian journal of microbiology, 51(1), 30-36. DOI: https://doi.org/10.1007/s12088-011-0076-7

van der Aart, L. T., Spijksma, G. K., Harms, A., Vollmer, W., Hankemeier, T., & van Wezel, G. P. (2018). High-resolution analysis of the peptidoglycan composition in Streptomyces coelicolor. Journal of bacteriology, 200(20), e00290-00218. DOI: https://doi.org/10.1128/JB.00290-18

Walter, V., Syldatk, C., & Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. Biosurfactants, 1-13. DOI: https://doi.org/10.1007/978-1-4419-5979-9_1

Winn, W. C., Allen, S., & Janda, W. (2006). Koneman’s color atlas and textbook of diagnostic microbiology: Lippincott Williams & wilkins. Philadelphia, PA.[Google Scholar].

Yerushalmi, L., Rocheleau, S., Cimpoia, R., Sarrazin, M., Sunahara, G., Peisajovich, A., Leclair, G., & Guiot, S. R. (1998). Enhanced biodegradation of petroleum hydrocarbons in contaminated soil. Journal of Soil Contamination, 7(1), 37-51. DOI: https://doi.org/10.1080/713914241

Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of microbiological methods, 56(3), 339-347. DOI: https://doi.org/10.1016/j.mimet.2003.11.001




How to Cite

Al-Healy, N. H., & Al-Sammak, E. G. (2022). Effects of streptomyces rochi Biosurfactants on Pathogenic Staphylococcus aureus and Pseudomonas aeruginosa. Al-Mukhtar Journal of Sciences, 37(3), 261–273. https://doi.org/10.54172/mjsc.v37i3.947



Research Articles