Phylogenetic Analysis of Libyan Thyme (Thymus Capitatus) Inferred from The Morphological Traits


  • Ezzudin S. Ali Department of Horticulture, Faculty of Agriculture, Omer Al-Mukhtar University, Libya
  • Hesaien M. Mustafa Department of Environmental Sciences, Faculty of Natural Resources, Omer Al-Mukhtar University, Libya
  • Khansa A. Omaar Department of Environmental Sciences, Faculty of Natural Resources, Omer Al-Mukhtar University, Libya



Thymus capitatus, morphological trait, flower measurements, clustering analysis, genetic diversity


The genetic diversity of wild thyme (Thymus capitatus) which growing  in southern parts of Al-Jabal Al-Akhdar region, Libya was studied by using cluster analysis of morphological traits (flower measurements). This study was aimed to establish the phylogenetic relationships based on floral parameters among accessions of thyme (T.capitatus). The five populations (accessions) of Libyan thyme were assigned into two clusters (clades) at the critical distance value of 22%. The 1stcluster  contained three populations that were included white-flowered, dotted white-flowered and violet-flowered accession, then the 1st cluster was divided into two sub-clusters by the critical distance value of 5%, the first sub-cluster contained two populations (white-flowered, dotted white-flowered accession). While, the second sub-cluster contained one population (violet-flowered accession). The 2nd cluster contained two populations which were purple-flowered and mosaic-flowered accessions. In conclusion, The flower measurements can be a preliminary tool to classify Libyan thyme (T.capitatus), and  floral parameters can be used in the classification of Libyan thyme accessions (populations).


Download data is not yet available.


Metrics Loading ...


Ali, E. S., Mustafa, H. M., & Blkasem, K. A. O. (2019). Morphological variation of Libyan carob (Ceratonia siliqua L.). Al-Mukhtar Journal of Sciences, 34(2), 126-133. DOI:

Ali, S. E. and Mustafa, M. H. (2020). Phylogenetics of some Arabic Olive (Oleaeuropaea, L.) Cultivars Based on Morpholgical Data. Libyan Journal of Basic Sciences, 12(1): 42- 50.

Al-Mustafa, A. and Al-Thunibat, O. (2008). Antioxidant activity of some Jordanian medicinal plant used traditionally for treatment of diabetes. Pak. J. of Bio. Sci., 11(3): 351-358. DOI:

Alves, T. M. d. A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. d. F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95, 367-373. DOI:

Ayed, R. B., Ennouri, K., Hassen, H. B., Triki, M., & Rebai, A. (2015). Comparison between DNA-based, pomological and chemical markers accomplished by bioinformatic tools to distinguish within Tunisian olive cultivars. Journal of Fundamental and Applied Sciences, 7(3), 408-421. DOI:

Baker, R. H., Yu, X., & DeSalle, R. (1998). Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. Molecular Phylogenetics and Evolution, 9(3), 427-436. DOI:

Bateman, R. M., Hilton, J., & Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’and ‘bottom-up’approaches used to infer the likely characteristics of the first flowers. Journal of Experimental Botany, 57(13), 3471-3503. DOI:

Bremer B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., and Soltis, D. E.(2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. , 161(2): 105–121. DOI:

Bounatirou, S., Smiti, S., Miguel, M. G., Faleiro, L., Rejeb, M., Neffati, M., Costa, M., Figueiredo, A., Barroso, J., & Pedro, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food chemistry, 105(1), 146-155. DOI:

Bowe, L. M., Coat, G., & DePamphilis, C. W. (2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proceedings of the National Academy of Sciences, 97(8), 4092-4097. DOI:

Coombs, E. A., Donoghue, M. J., & McGinley, R. J. (1981). Characters, computers, and cladograms: A review of the Berkeley cladistics workshop. Systematic Botany, 359-372. DOI:

Cracraft, J., & Donoghue, M. J. (2004). Charting the tree of life. Assembling the Tree of Life, 1-4.

Crane, P. R. (1985). Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden, 716-793. DOI:

Daly, D. C., Cameron, K. M., & Stevenson, D. W. (2001). Plant systematics in the age of genomics. Plant physiology, 127(4), 1328-1333. DOI:

Davis, J. I., Simmons, M. P., Stevenson, D. W., & Wendel, J. F. (1998). Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the monocotyledons using mitochondrial atp A sequences. Systematic Biology, 47(2), 282-310. DOI:

Donoghue, P. C., & Yang, Z. (2016). The evolution of methods for establishing evolutionary timescales. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1699), 20160020. DOI:

Doyle, J. A. (2013). Phylogenetic analyses and morphological innovations in land plants. Annual Plant Reviews online, 1-50. DOI:

Doyle, J. A., & Donoghue, M. J. (1986). Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. The Botanical Review, 52(4), 321-431. DOI:

Doyle, J. A., & Endress, P. K. (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences, 161(S6), S121-S153. DOI:

Doyle, J. A., Endress, P. K., & Upchurch, G. R. (2008). Early Cretaceous monocots: a phylogenetic evaluation. Sborník Národního muzea v Praze. Acta Musei nationalis Pragae, 64(2-4), 61-87.

Doyle, J. J., & Luckow, M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant physiology, 131(3), 900-910. DOI:

Duncan, T., Phillips, R. B., & Wagner Jr, W. H. (1980). A comparison of branching diagrams derived by various phenetic and cladistic methods. Systematic Botany, 264-293. DOI:

Ebrahimi, S. N., Hadian, J., Mirjalili, M., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food chemistry, 110(4), 927-931. DOI:

Endress, P. K., & Doyle, J. A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany, 96(1), 22-66. DOI:

Endress, P. K., & Igersheim, A. (2000). Gynoecium structure and evolution in basal angiosperms. International Journal of Plant Sciences, 161(S6), S211-S223. DOI:

Ennouri, K., Rayda, B., Ercisli, S., Fathi, B., & Triki, M. A. (2017). Evaluation of variability in Tunisian Olea europaea L. accessions using morphological characters and computational approaches. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 262-269. DOI:

Figueiredo, A. C., Barroso, J. G., Pedro, L. G., Salgueiro, L., Miguel, M. G., & Faleiro, M. L. (2008). Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities. Current Pharmaceutical Design, 14(29), 3120-3140. DOI:

Forte, A., Ignatov, A., Ponomarenko, V., Dorokhov, D., & Savelyev, N. (2002). Phylogeny of the Malus (apple tree) species, inferred from the morphological traits and molecular DNA analysis. Russian Journal of Genetics, 38(10), 1150-1161. DOI:

Giribet, G. (2015). Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. Zoologischer Anzeiger-A Journal of Comparative Zoology, 256, 96-103. DOI:

Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. DOI:

Gruenwald, J., Brendler, T., & Jaenicke, C. (2004). Physicians Desk Reference (PDR) for Herbal Medicines. Thirth Edition. Montvale, New Jersey: Thomson. Medical Economics Company.

Hall, J. C., Sytsma, K. J., & Iltis, H. H. (2002). Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. American Journal of Botany, 89(11), 1826-1842. DOI:

Hennig, W. (1966). Phylogenetic systematics. Urbana, IL. IL: University of Illinois Press.[Google Scholar].

Hillis, D., & Wiens, J. (2000). Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. Phylogenetic analysis of morphological data, 1-19.

Hu, G.-X., Takano, A., Drew, B. T., Liu, E.-D., Soltis, D. E., Soltis, P. S., Peng, H., & Xiang, C.-L. (2018). Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Annals of botany, 122(4), 649-668. DOI:

Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current medicinal chemistry, 10(10), 813-829. DOI:

Keating, J. N., Sansom, R. S., Sutton, M. D., Knight, C. G., & Garwood, R. J. (2020). Morphological phylogenetics evaluated using novel evolutionary simulations. Systematic Biology, 69(5), 897-912. DOI:

Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389(6646), 33-39. DOI:

Kim, J. H., Guiry, M. D., Oak, J. H., Choi, D. S., Kang, S. H., Chung, H., & Choi, H. G. (2007). Phylogenetic relationships within the tribe Janieae (Corallinales, Rhodophyta) based on molecular and morphological data: a reappraisal of Jania 1. Journal of phycology, 43(6), 1310-1319. DOI:

Lee, M. S., & Palci, A. (2015). Morphological phylogenetics in the genomic age. Current Biology, 25(19), R922-R929. DOI:

Leht, M. (2009). Phylogenetics of Vicia (Fabaceae) based on morphological data. Feddes Repertorium, 120(7‐8), 379-393. DOI:

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50(6), 913-925. DOI:

Luna, I., & Ochoterena, H. (2004). Phylogenetic relationships of the genera of Theaceae based on morphology. Cladistics, 20(3), 223-270. DOI:

Manly, B. F. (1986). Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Researches on Population Ecology, 28(2), 201-218. DOI:

Manos, P. S., Miller, R. E., & Wilkin, P. (2001). Phylogenetic analysis of Ipomoea, Argyreia, Stictocardia, and Turbina suggests a generalized model of morphological evolution in morning glories. Systematic Botany, 26(3), 585-602.

Mathews, S. (2009). Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. American Journal of Botany, 96(1), 228-236. DOI:

Renzaglia, K. S., Schuette, S., Duff, R. J., Ligrone, R., Shaw, A. J., Mishler, B. D., & Duckett, J. G. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. The bryologist, 179-213. DOI:[179:BPATMA]2.0.CO;2

Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of ethnopharmacology, 98(1-2), 195-200. DOI:

Schneider, H., Pryer, K. M., Cranfill, R., Smith, A., & Wolf, P. (2002). Evolution of vascular plant body plans: a phylogenetic perspective. Developmental genetics and plant evolution, 330-364. DOI:

Schneider, H., Smith, A. R., & Pryer, K. M. (2009). Is morphology really at odds with molecules in estimating fern phylogeny? Systematic Botany, 34(3), 455-475. DOI:

Soltis, D. E., & Soltis, P. S. (2003). The role of phylogenetics in comparative genetics. Plant physiology, 132(4), 1790-1800. DOI:

Soltis, E. D., & Soltis, P. S. (2000). Contributions of plant molecular systematics to studies of molecular evolution. Plant Molecular Biology, 42(1), 45-75. DOI:

Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Teisher, J. K., Clark, L. G., Barberá, P., Gillespie, L. J., & Zuloaga, F. O. (2017). A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and evolution, 55(4), 259-290. DOI:

SWECO, (1986).Land survey, mapping and pasture survey for 550,000 hectares of south Jabel El-Akhdar area. Socialist People's Libyan Arab Jamahiriya. Secretariat for Agricultural Reclamation and Land Development. Contract No. 15/90/81. Final report. S-100 26, Stockholm, Sweden..

Wiens, J. J. (2004). The role of morphological data in phylogeny reconstruction. Systematic Biology, 53(4), 653-661. DOI:

Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M., & Becker, B. (2011). Origin of land plants: do conjugating green algae hold the key? BMC Evolutionary Biology, 11(1), 1-10. DOI:

Zhi-Qin, Z., & Pankai-Yu, H.-Y. (2003). Phylogenetic analyses of Paeonia section Moutan (treepeonies, Paeoniaceae) based on morphological data. Journal of Systematics and evolution, 41(5), 436.




How to Cite

Ali, E. S., Mustafa, H. M., & Omaar, K. A. (2022). Phylogenetic Analysis of Libyan Thyme (Thymus Capitatus) Inferred from The Morphological Traits. Al-Mukhtar Journal of Sciences, 37(4), 385–393.



Research Articles